This page is an entry in an

Encyclopedia of Combinatorial Polytope Sequences



Back to big table.

Cut Polytope / Correlation Polytope

(4, 0, 0, 0)
[polymake for n=4]

  • Cut Polytopes of complete graph CUT(n)= P_C(K_n) [Springer] (Barahona, Mahjoub) [arXiv] (Ziegler)
    [SMAPO library]
  • convex_hull({incidence_vector_F | F a cut of the complete graph on n nodes})
  • Correlation Polytopes COR(n-1) of the complete graph [Springer] (I. Pitowski)
  • convex_hull({xx^T | x {0,1}-column vector of length n-1})
  • Binomial Polytopes B(n-1,2) [Springer] (S. Ursic)
  • convex_hull({truth_vector t_i | t_i is the negated truth-table row i of all {or, not} clauses using n-1 variables 2 at a time.})
  • Dimensions:
    1, 3, 6, 10, 15,... (n choose 2) [ OEIS A000217]
  • Number of Vertices in nth polytope:
    2, 4, 8, 16, 32 ... 2^(n-1) [ OEIS A000079]
  • Number of Facets:
    2, 4, 16, 56, 368, 116764, ... OPEN [ OEIS A235459]
  • f-vectors:
    1, 2, 1, 4, 6, 4, 1, 8, 28, 56, 68, 48, 16, 1... [ OEIS ?]
  • top    index