Faces of Balanced Minimal Evolution Polytopes from Quotients of the Permutoassociahedron.

Stefan Forcey, Logan Keefe, William Sands. U. Akron.

Facets of Balanced Minimal Evolution polytopes.

d = $\langle 6, 8, 9, 12, 7, 15 \rangle$

Stefan Forcey, Logan Keefe, William Sands. U. Akron. Facets of Balanced Minimal Evolution polytopes.

The Balanced minimal evolution polytope \mathcal{P}_4 .

Stefan Forcey, Logan Keefe, William Sands. U. Akron. Facets of Balanced Minimal Evolution polytopes.

Permutoassociahedron \mathcal{KP}_2

Permutoassociahedron \mathcal{KP}_2

Stefan Forcey, Logan Keefe, William Sands. U. Akron.

Facets of Balanced Minimal Evolution polytopes.

Permutoassociahedron \mathcal{KP}_3

Stefan Forcey, Logan Keefe, William Sands. U. Akron. Facets of

Projection to BME(n)

Theorem

If $x \leq y$ as faces in the face lattice of \mathcal{KP}_n , then $\varphi(x) \leq \varphi(y)$ as faces in the face lattice of \mathcal{P}_n , the BME polytope.

Projection to BME(2)

Stefan Forcey, Logan Keefe, William Sands. U. Akron.

Facets of Balanced Minimal Evolution polytopes.

Now we show how the target of the map φ is actually the BME polytope.

Theorem

For each non-binary phylogenetic tree t with n leaves there is a corresponding face F(t) of the BME polytope \mathcal{P}_n . The vertices of F(t) are the binary phylogenetic trees which are refinements of t.

A face of BME(n)

Stefan Forcey, Logan Keefe, William Sands. U. Akron.

Facets of Balanced Minimal Evolution polytopes.

Theorem

For t an n-leaved phylogenetic tree with exactly one node ν of degree m > 3, the tree face F(t) is precisely the clade-face $F_{C_1,...,C_p}$, defined in [H,H,Y], corresponding to the collection of clades C_1, \ldots, C_p which result from deletion of ν . Thus F(t) is combinatorially equivalent to the smaller dimensional BME polytope \mathcal{P}_m .

Stefan Forcey, Logan Keefe, William Sands. U. Akron. Facets of Balanced Minimal Evolution polytopes.

Theorem

Let t be a phylogenetic tree with n > 5 leaves which has exactly two nodes ν and μ , with degrees both larger than 3. Then the trees which refine t are the vertices of a facet of the BME polytope \mathcal{P}_n .

Split faces; split facets.

Figure: Examples of chains in the lattice of tree-faces of the BME polytope \mathcal{P}_9 .

Stefan Forcey, Logan Keefe, William Sands. U. Akron. Facets of Balanced Minimal Evolution polytopes.

Features of the BME polytope \mathcal{P}_n

number	dim.	vertices	facets	facet inequalities	number of	number of
of	of \mathcal{P}_n	of \mathcal{P}_n	of \mathcal{P}_n	(classification)	facets	vertices
species						in facet
3	0	1	0	-	-	-
4	2	3	3	$x_{ab} \ge 1$	3	2
				$x_{ab} + x_{bc} - x_{ac} \le 2$	3	2
5	5	15	52	$x_{ab} \ge 1$ (caterpillar)	10	6
				$x_{ab} + x_{bc} - x_{ac} \le 4$ (intersecting-cherry)	30	6
				$\begin{array}{c} x_{ab} + x_{bc} + x_{cd} + x_{df} + x_{fa} \leq 13 \\ \mbox{(cyclic ordering)} \end{array}$	12	5
6	9	105	90262	$x_{ab} \ge 1$ (caterpillar)	15	24
				$x_{ab} + x_{bc} - x_{ac} \le 8$ (intersecting-cherry)	60	30
				$\begin{array}{c} x_{ab} + x_{bc} + x_{ac} \leq 16\\ (3,3)\text{-split} \end{array}$	10	9
n	$\binom{n}{2} - n$	(2n - 5)!!	?	$x_{ab} \ge 1$ (caterpillar)	(ⁿ ₂)	(n – 2)!
				$x_{ab} + x_{bc} - x_{ac} \le 2^{n-3}$ (intersecting-cherry)	$\binom{n}{2}(n-2)$	2(2n - 7)!!
				$x_{ab} + x_{bc} + x_{ac} \le 2^{n-2}$ (m, 3)-split, $m \ge 3$	(ⁿ ₃)	3(2 <i>n</i> - 9)!!
				$\frac{\sum_{S} x_{ij} \leq (m-1)2^{n-3}}{(m,n-m)\text{-split } S,}$ $m > 2, n > 5$	$2^{n-1} - \binom{n}{2} - n - 1$	$(2(n-m)-3)!! \times (2m-3)!!$

Questions and comments?

Advertisement: http://www.math.uakron.edu/~sf34/hedra.htm polytope > print \$p->VERTICES;

- 12222114411
- 12222141141
- 1 4/3 8/3 8/3 4/3 8/3 4/3 8/3 4/3 4/3 8/3
- 1 4/3 8/3 8/3 4/3 4/3 8/3 8/3 4/3 8/3 4/3
- 14112112422
- 1 8/3 4/3 4/3 8/3 8/3 4/3 4/3 8/3 4/3 8/3 1 8/3 4/3 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 1 2 2 2 2 4 1 1 1 1 4
- 1 8/3 8/3 4/3 4/3 4/3 8/3 4/3 4/3 8/3 8/3 1 8/3 8/3 4/3 4/3 4/3 4/3 8/3 8/3 4/3 8/3
- 12411222114
- 1 4/3 4/3 8/3 8/3 8/3 4/3 8/3 8/3 4/3 4/3
- 1 4/3 8/3 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3

polytope > print \$p->VERTICES;

```
11214241221
```

- 11241214221
- 11421124212
- 11124421212
- 1112772121
- 1 1 1 4 2 4 1 2 1 2 2
- 11412142122
- 12141222141

1 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 8/3 4/3

12114222411

1 4/3 4/3 8/3 8/3 8/3 8/3 4/3 4/3 4/3 8/3 4/3 1 4/3 8/3 4/3 8/3 8/3 8/3 8/3 4/3 4/3 4/3 8/3 1 4 1 2 1 1 2 1 2 4 2

14211211224

1 8/3 4/3 4/3 8/3 4/3 8/3 4/3 8/3 8/3 4/3

12222114411

12222141141

- 1 4/3 8/3 8/3 4/3 8/3 4/3 8/3 4/3 8/3
- 1 4/3 8/3 8/3 4/3 4/3 8/3 8/3 4/3 8/3 4/3 1 4 1 1 2 1 1 2 4 2 2

1 8/3 4/3 4/3 8/3 8/3 4/3 4/3 8/3 4/3 8/3 1 8/3 4/3 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 1 2 2 2 2 4 1 1 1 1 4

1 8/3 8/3 4/3 4/3 4/3 8/3 4/3 4/3 8/3 8/3 1 8/3 8/3 4/3 4/3 4/3 4/3 8/3 8/3 4/3 8/3 1 2 4 1 1 2 2 2 1 1 4

12411222114

1 4/3 4/3 8/3 8/3 8/3 4/3 8/3 8/3 4/3 4/3 1 4/3 8/3 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3