Response Matrix M :
Note: L and -L are often interchanged

R
voltages currents in $(+)$ or out $(-)$ at each leaf applied at leaves

Resistance Matrix W
$\mathrm{V}=\mathrm{I} R, \mathrm{C}=1 / \mathrm{R}$
metric of resistance distances
$-L=\left|\begin{array}{ccccccc}-\cdots & 0 & -\cdots & 0 & 2 & 0 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ 0 & 0 & -4 & 0 & 0 & 4 \\ 0 & 0 & 0 & -1 & 0 & 1 \\ \hdashline 2 & 1 & 0 & 0 & -6 & 3 \\ 0 & 0 & 4 & 1 & 3 & -8\end{array}\right|$

$$
M=A-B C^{-1} B^{\top}
$$

$$
\left.M=\left\lvert\, \begin{array}{cccc}
-2 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -4 & 0 \\
0 & 0 & 0 & -1
\end{array}\right.\right)-\left(\begin{array}{cc}
2 & 0 \\
1 & 0 \\
0 & 4 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
-6 & 3 \\
3 & -8
\end{array}\right)^{-1}\left(\begin{array}{llll}
2 & 1 & 0 & 0 \\
0 & 0 & 4 & 1
\end{array}\right)
$$

$$
=\frac{1}{39}\left(\begin{array}{cccc}
-46 & 16 & 24 & 6 \\
16 & -31 & 12 & 3 \\
24 & 12 & -60 & 24 \\
6 & 3 & 24 & -33
\end{array}\right)=\left(\begin{array}{ccccc}
-\frac{46}{39} & \frac{16}{39} & \frac{8}{13} & \frac{2}{13} \\
\frac{16}{39} & -\frac{31}{39} & \frac{4}{13} & \frac{1}{13} \\
\frac{8}{13} & \frac{4}{13} & -\frac{20}{13} & \frac{8}{13} \\
\frac{2}{13} & \frac{1}{13} & \frac{8}{13} & -\frac{11}{13}
\end{array}\right)
$$

$\mathrm{L}+(1 / 6) \mathrm{J}=$ where J is matrix of all 1 's
$\left(\begin{array}{cccccc}\frac{13}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{11}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{7}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{5}{6} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{25}{6} & \frac{1}{6} & \frac{1}{6} & -\frac{23}{6} \\ \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{7}{6} & \frac{1}{6} & -\frac{5}{6} \\ -\frac{11}{6} & -\frac{5}{6} & \frac{1}{6} & \frac{1}{6} & \frac{37}{6} & -\frac{17}{6} \\ \frac{1}{6} & \frac{1}{6} & -\frac{23}{6} & -\frac{5}{6} & -\frac{17}{6} & \frac{49}{6}\end{array}\right)$

Pseudoinverse: $\quad L^{+}=$

$$
\frac{1}{144}\left(\begin{array}{cccc:cc}
-71 & -13 & -19 & -37 & 11 & -13 \\
-13 & 119 & -31 & -49 & -1 & -25 \\
-19 & -31 & 47 & -7 & -7 & 17 \\
-37 & -49 & -7 & 119 & -25 & -1 \\
\hdashline 11 & -1 & -7 & -25 & 23 & -1 \\
-13 & -25 & 17 & -1 & -1 & 23
\end{array}\right)
$$

$$
\left.-2\left(\begin{array}{cccc}
95 & 11 & 5 & -13 \\
11 & 143 & -7 & -25 \\
5 & -7 & 71 & 17 \\
-13 & -25 & 17 & 143
\end{array}\right)\right)
$$

Note :the same calculation for W works with X or with pseudoinverse of L .
Quest. 1 Show that W is Kalmanson.
Quest. 2 Find a function from W to M .
Quest. 3 Relate the complex of circular split networks to the complex of circular planar networks
[1] J. Alman, C. Lian, B. Tran, slides: Response Matrices of Circular Planar Electrical Networks
$\mathrm{W}=\mathrm{Z}_{d} \mathrm{~J}+\mathrm{JZ}{ }_{d}-2 \mathrm{Z} \quad$ example: $(97+145+2(23)) / 192=3 / 2$
$=(-1 / 192)\left(\left(\begin{array}{cccc}-97 & 0 & 0 & 0 \\ 0 & -145 & 0 & 0 \\ 0 & 0 & -73 & 0 \\ 0 & 0 & 0 & -145\end{array}\right) \times\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)+\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right) \times\left(\begin{array}{ccccc}-97 & 0 & 0 & 0 \\ 0 & -145 & 0 & 0 \\ 0 & 0 & -73 & 0 \\ 0 & 0 & 0 & -145\end{array}\right)-\left(\begin{array}{ccc}-97 & 23 & 19 \\ 23 & 55 \\ -145 & 43 & 79 \\ 19 & 43 & -73 \\ 11 \\ 55 & 79 & 11 \\ -145\end{array}\right)\right.$
Interpretation:
$M(i, j)$ is the current at leaf j when voltage of 1 (positive terminal) is applied to leaf i, and voltage 0 (negative terminal) to all other leaves simultaneously.
$W(i, j)$ is the resistance between leaf i and leaf j; so equals $1 /(c u r r e n t)$ at leaf i (and j) when voltage 1 (positive terminal) is applied to leaf i and voltage 0 (negative terminal) is applied at leaf j, (or vice versa) and other leaves are not connected to the circuit!

