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Abstract. Given a simple graph G, the graph associahedron KG is a simple polytope whose
face poset is based on the connected subgraphs of G. This paper defines and constructs graph
associahedra in a general context, for pseudographs with loops and multiple edges, which are
also allowed to be disconnected. We then consider deformations of pseudograph associahedra
as their underlying graphs are altered by edge contractions and edge deletions.

1. Introduction

1.1. Given a simple, connected graph G, the graph associahedron KG is a convex polytope

whose face poset is based on the connected subgraphs of G [3]. For special examples of graphs,

the graph associahedra become well-known, sometimes classical polytopes. For instance, when

G is a path, a cycle, or a complete graph, KG results in the associahedron, cyclohedron, and

permutohedron, respectively. A geometric realization was given in [7]. Figure 1 shows KG when

G is a path and a cycle with three nodes, resulting in the 2D associahedron and cyclohedron.

( a ) ( b )

Figure 1. Graph associahedra of the (a) path and (b) cycle with three nodes
as underlying graphs.

These polytopes were first motivated by De Concini and Procesi in their work on “wonderful”

compactifications of hyperplane arrangements [5]. In particular, if the hyperplane arrangement

is associated to a Coxeter system, the graph associahedron KG appear as tilings of these spaces,
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where its underlying graph G is the Coxeter graph of the system [4]. These compactified arrange-

ments are themselves natural generalizations of the Deligne-Knudsen-Mumford compactification

M0,n(R) of the real moduli space of curves [6]. From a combinatorics viewpoint, graph associa-

hedra arise in relation to positive Bergman complexes of oriented matroids [1] along with studies

of their enumerative properties [13]. Recently, Bloom has shown graph associahedra arising in

results between Seiberg-Witten Floer homology and Heegaard Floer homology [2]. Most notably,

these polytopes have emerged as graphical tests on ordinal data in biological statistics [11].

1.2. It is not surprising to see KG in such a broad range of subjects. Indeed, the combinatorial

and geometric structures of these polytopes capture and expose the fundamental concepts of

connectivity and nestings. There have been several extensions of graph associahedra, such as

nested sets [8], nested complexes [15] and the larger class of generalized permutohedra [12].

However, none of these constructions capture the notion of nested sets of pseudographs, as we

do below. Indeed, our notion of the set of tubes, now expanded to include multiedges and loops,

is not a classical building set, but falls in a different category altogether.

The goal of this paper is to define and construct graph associahedra for pseudographs, namely

graphs which are allowed to be disconnected, with loops and multiple edges. This is considered

not just for generalization’s sake, but most importantly for maps between graph associahedra.

Indeed, two graphs G and G′ related by edge contraction or edge deletion naturally introduce

multiedges and loops, and induce a map between their associated graph associahedra KG and

KG′. Such an operation is foundational, for instance, to the Tutte polynomial of a graph

G, defined recursively using the graphs G/e and G − e, which itself specializes to the Jones

polynomial of knots.

An overview of the paper is as follows: Section 2 supplies the definitions of the pseudograph

associahedra along with several examples. Section 3 provides a construction of these polytopes

and polytopal cones from iterated truncations of products of simplices and rays. The connection

to edge contractions (Section 4) and edge deletions (Section 5) are then presented. A geometric

realization is given in Section 6, used to relate pseudographs with loops to those without. Finally,

proofs of the main theorems are given in Section 7.

Acknowledgments. We thank the referee for insightful comments and corrections. The second

author thanks Lior Pachter, Bernd Sturmfels, MSRI, and the University of California at Berkeley

for their hospitality during his 2009-2010 sabbatical where this work was finished.

2. Definitions

2.1. We begin with foundational definitions. Although graph associahedra were introduced and

defined in [3], we start here with a blank slate. The reader is forewarned that definitions here

might not exactly match those from earlier works since previous ones were designed to deal with

just the case of simple graphs.
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Definition. Let G be a finite pseudograph with connected components G1, . . . , Gk.

(1) A tube t is a proper connected subgraph of G that includes at least one edge between

every pair of nodes of t if such edges of G exist.

(2) Two tubes are compatible if one properly contains the other, or if they are disjoint and

cannot be connected by a single edge of G.

(3) A tubing of G is a set of pairwise compatible tubes which cannot contain all of the tubes

G1, . . . , Gk.

Example. The top row of Figure 2 shows examples of tubings, whereas the bottom row does

not. Part (e) fails since one edge between the bottom two nodes must be in the tube. The tubing

in part (f) contains a non-proper tube of G. The two tubes of part (g) fail to be compatible

since they can be connected by a single edge of G. And finally, the tubing of part (h) fails since

it contains all the tubes of the connected components.

( a ) ( b ) ( c ) ( d )

( e ) ( f ) ( g ) ( h )

Figure 2. The top row shows tubings and the bottom row does not.

Remark. The set of tubes of a pseudograph is not in general a building set (as in Definition 7.1

of [12]) on either the set of nodes or the set of edges of G. This is because condition (1) above,

which does not allow a tube to contain two connected nodes but none of their edges, contradicts

the requirement that a building set contains the union of any two of its elements which intersect.

For instance, the nontube in Figure 2(e) can be seen as the union of two intersecting tubes.

2.2. Let r be the number of redundant edges of G, the minimal number of edges we can remove

to get a simple graph. We now state one of our main theorems.

Theorem 1. Let G be a finite pseudograph with n nodes and r redundant edges. The pseudo-

graph associahedron KG is of dimension n− 1 + r and is either

(1) a simple convex polytope when G has no loops, or

(2) a simple polytopal cone otherwise.

Its face poset is isomorphic to the set of tubings of G, ordered under reverse subset containment.

In particular, the codimension k faces are in bijection with tubings of G containing k tubes.



4 MICHAEL CARR, SATYAN L. DEVADOSS, AND STEFAN FORCEY

The proof of this theorem follows from the construction of pseudograph associahedra from

truncations of products of simplices and rays, given by Theorem 6. The following result allows

us to consider only connected pseudographs G:

Theorem 2. Let G be a disconnected pseduograph with connected components G1, G2, . . . , Gk.

Then KG is isomorphic to KG1 ×KG2 × · · · × KGk × ∆k−1.

Proof. Any tubing of G can be described as:

(1) a listing of tubings T1 ∈ KG1, T2 ∈ KG2, . . . , Tk ∈ KGk, and

(2) for each component Gi either including or excluding the tube Ti = Gi, as long as all

tubes Gi are not included.

The second part of this description is clearly isomorphic to a tubing of the edgeless graph Hk

on k nodes. But from [7, Section 3], since KHk is the simplex ∆k−1, we are done. �

We now pause to illustrate several examples.

Example. We begin with the 1D cases. Figure 3(a) shows the pseudograph associahedron of a

path with two nodes. The polytope is an interval, seen as the classical 1D associahedron. Here,

the interior of the interval, the maximal element in the poset structure, is labeled with the graph

with no tubes. Part (b) of the figure shows KG as a ray when G is a loop. Note that we cannot

have the entire loop as a tube since all tubes must be proper subgraphs.

( a ) ( b )

Figure 3. Two 1D examples.

Example. For some 2D cases, Figure 1 displays KG for a path and a cycle with three nodes as

underlying graphs. Figure 4(a) shows the simplest example of KG for a graph with a multiedge,

resulting in a square. The vertices of the square are labeled with tubings with two tubes, the

edges with tubings with one tube, and the interior with no tubes. Figure 4(b) shows KG, for G

an edge with a loop, as a polygonal cone, with three vertices, two edges, and two rays. We will

explore this figure below in further detail.

Example. Three examples of 3D pseudograph associahedra are given in Figure 5. Since each

of the corresponding graphs have 3 nodes and one multiedge, the dimension of the polytope is

three, as given in Theorem 1. Theorem 2 shows part (a) as the product of an interval (having

two components) with the square from Figure 4(a), resulting in a cube. The polyhedra in parts
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( a ) ( b )

Figure 4. Two 2D examples.

(b) and (c) can be obtained from iterated truncations of the triangular prism. Section 3 brings

these constructions to light.

( b ) ( c )( a )

Figure 5. Three 3D examples.

2.3. We close this section with an elegant relationship between permutohedra and two of the

simplest forms of pseudographs.

Definition. The permutohedron Pn is an (n−1)-dimensional polytope whose faces are in bijec-

tion with the strict weak orderings on n letters. In particular, the n! vertices of Pn correspond

to all permutations of n letters.

The two-dimensional permutohedron P3 is the hexagon and the polyhedron P4 is depicted in

Figure 19(a). It was shown in [7, Section 3] that if Γn is a complete graph of n nodes, then KΓn

becomes Pn.

Proposition 3. Consider the simplest forms of pseudographs G:

(1) If G has two nodes and n edges between them, then KG is isomorphic to Pn × ∆1.



6 MICHAEL CARR, SATYAN L. DEVADOSS, AND STEFAN FORCEY

(2) If G has one node and n loops, then KG is isomorphic to Pn × ρ, where ρ is a ray.

Proof. Consider case (1): We view Pn as KΓn for the complete graph on n nodes {v1, . . . vn},
and the interval ∆1 as KΓ2 for the complete graph on two nodes {b1, b2}. Let the nodes of G

be {a1, a2} and its edges {e1, . . . , en}. We construct an isomorphism KG → KΓn × KΓ2 where

a tube Gt of G maps to the tube (ψ1(t), ψ2(t)), where ψ1(t) is the connected subgraph of Γn

induced by the node set {vi | ei ∈ Gt}, and ψ2(t) is the node {bi | ai = Gt}. This proves the

first result; the proof of case (2) is similar, replacing the two nodes of G with one node. �

Example. Figure 6(a) shows a hexagonal prism, viewed as P3 × ∆1. It is the pseudograph

associahedron of the graph with two nodes and three connecting edges. Part (b) shows a 2D

projection of P3 ×ρ, the hexagonal cone of a graph with three loops; the removal of a hexagonal

facet in (a) yields the object in (b).

( b )( a )

Figure 6. (a) The hexagonal prism P3 × ∆1 and (b) the planar projection of P3 × ρ.

3. Constructions

3.1. There exists a natural construction of graph associahedra from iterated truncations of the

simplex: For a connected, simple graph G with n nodes, let �G be the (n−1)-simplex ∆n−1 in

which each facet (codimension one face) corresponds to a particular node. Thus each proper

subset of nodes of G corresponds to a unique face of �G defined by the intersection of the faces

associated to those nodes. Label each face of �G with the subgraph of G induced by the subset

of nodes associated to it.

Theorem 4. [3, Section 2] For a connected, simple graph G, truncating faces of ∆G labeled by

tubes, in increasing order of dimension, results in the graph associahedron KG.



PSEUDOGRAPH ASSOCIAHEDRA 7

Figure 7 provides an example of this construction. It is worth noting two important features

of this truncation. First, only certain faces of the original base simplex �G are chosen for

truncation, not any new faces which appear after subsequent truncations. Second, the order in

which the truncations are performed follow a De Concini - Procesi framework [5], where all the

dimension k faces are truncated before truncating any (k + 1)-dimensional faces.

Figure 7. An iterated truncation of the simplex resulting in a graph associahedron.

3.2. We construct the general pseudograph associahedron by a similar series of truncations to

a base polytope. However the truncation procedure is a delicate one, where neither feature

described above succeeds here.

Definition. Let G be a pseudograph with n nodes. A bundle is the set of all (non-loop) edges

with the same pair of endpoints. Let Gs be the underlying simple graph of G, created by deleting

all the loops and replacing each bundle with a single edge.1 Figure 8(a) shows an example of a

pseudograph with 10 bundles and 4 loops, whereas part (b) shows its underlying simple graph.

( a ) ( b )

Figure 8. (a) Pseudograph and (b) its underlying simple graph.

Let B = {B1, . . . , Bk} be the set of bundles of edges of G, and denote bi as the number of

edges of bundle Bi, and λ as the number of loops of G. Define ��G as the product

∆n−1 ×
∏

Bi∈B
∆bi−1 × ρλ

1This graph is uniquely defined up to graph isomorphism.
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of simplices and rays ρ endowed with the following labeling on its faces:

(1) Each facet of the simplex ∆n−1 is labeled with a particular node of G, and each face of

∆n−1 corresponds to a proper subset of nodes of G, defined by the intersection of the

facets associated to those nodes.

(2) Each vertex of the simplex ∆bi−1 is labeled with a particular edge of bundle Bi, and each

face of ∆bi−1 corresponds to a subset of edges of Bi defined by the vertices spanning the

face.

(3) Each ray ρ is labeled with a particular loop of G.

(4) These labelings naturally induce a labeling on ��G.

The construction of graph associahedra from truncations of the simplex involved only a la-

beling associated to the nodes of our underlying graph. Thus tubes of the graph are immediate,

based on connected subgraphs containing certain nodes. The construction of pseudograph asso-

ciahedra, however, involves the complexity of issues relating both the nodes and the edges. This

leads not only to a subtle choosing of the faces of ��G to truncate, but a delicate ordering of

the truncation of the faces.

We begin by marking the faces of ��G which will be of interest in the truncation process:

First, label each node and edge of the pseudograph G. Then, associate a label set St to each

tube Gt of G such that

(1) all nodes of Gt are in St,

(2) all edges of Gt are in St,

(3) all bundles of G not containing edges of Gt are in St, and

(4) all loops not incident to any node of Gt are in St.

Definition. A tube Gt is full if it is a collection of bundles of G which contains all the loops of

G incident to the nodes of Gt. In other words, Gt is an induced subgraph of G.

Figure 9 shows examples of tubes of a graph G and their associated labeling. The two tubes on

the top row are full, whereas the bottom four tubes are not.

1 2 3 4

a

b

c

d
e f

4 a b c d e f

4 a b c d e

3 4 a b c d e f 

1 2 3 a c d e f 1 2 3 4 a b c e 3 4 a b c d e

Figure 9. Tubes and their corresponding labels in ��G.
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3.3. We can now state our construction of KG from truncations, broken down into two steps:

Lemma 5. Let G be a connected pseudograph. Truncating the faces of ��G labeled with full

tubes, in increasing order of dimension, constructs

(3.1) KGs ×
∏

Bi∈B
�bi−1 × ρλ .

Proof. A full tube consisting only of bundles maps to the (bi−1)-face of ∆bi−1. Thus truncating

these faces has a trivial effect on that portion of the product. The result then follows immediately

from Theorem 4. �

As each face f of ��G which is labeled with full tubes is truncated, those subfaces of f that

correspond to tubes but have not yet been truncated are removed. It is natural, however, to

assign these defunct tubes to the combinatorial images of their original subfaces. Denote ��∗
G

as the truncated polytope of (3.1).

Theorem 6. Truncating the remaining faces of ��∗
G labeled with tubes, in increasing order of

the number of elements in each tube, results in the pseudograph associahedron KG polytope.

This immediately implies the combinatorial result of Theorem 1. The proof of this theorem is

given in Section 7. Notice the dimension of KG is the dimension of ��G, which in turn equals

(n− 1) + (bi − 1) + · · · + (bp − 1) = n− 1 + r, for r redundant edges, as claimed.

Example. We construct the pseudograph associahedron in Figure 5(b) from truncations. The

left side of Figure 10 shows the pseudograph G along with a labeling of its nodes and bundles.

(Notice the edge from node 2 to node 3 is not labeled since the bundle associated to this edge is

1 2 3

a

b

1 3 a 2 3 a

1 2 a

1 2 b

2 3 b
1 3 b3

21

a b

Figure 10. A base polytope ��G and its labelings.

the trivial ∆0 point.) Thus the base polytope ��G is the product of ∆2 × ∆1, with the middle

diagram providing the labeling on ∆2 and ∆1 from G. The right side of the figure shows the

induced labeling of the vertices of ��G from the labeling of G.

Figure 11 shows the iterated truncation of ��G in order to arrive at KG. Lemma 5 first
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1 2 a 1 2 b1 2 a b1 a b

2 a b3 a b1 2 3 a

1 2 3 b

2 3 a b

Figure 11. Iterated truncations of ��G resulting in KG from Figure 5(b).

requires truncating the faces of ��G labeled with full tubes. There are five such faces in this

case, three square facets and two edges. Since the squares (labeled on the triangular prism on

the left) are facets, their truncations do not change the combinatorial structure of the resulting

polyhedron. The truncation of the two edges is given in the central picture of Figure 11, yielding

��∗
G. This polytope is KGs ×∆1, a pentagonal prism, as guaranteed by the lemma. Theorem 6

then requires truncations of the remaining faces labeled with tubes. There are four such faces,

two triangle facets (which are two facets of ��G, labeled on the left of Figure 11) and two edges,

resulting in the polyhedron KG on the right.

Example. Let G be a pseudograph of an edge with a loop attached at both nodes. Figure 12

shows the polyhedral cone ∆1 × ρ2 along with the labeling of its four facets. There are two full

tubes, the front and back facets in (a), and thus their truncation does not alter the polyhedral

cone. There are five other tubes to be truncated: two containing one element (a node), one

with three elements (two nodes and an edge), and two facets with four elements (two nodes, one

edge, one loop). By Theorem 6, the truncation is performed in order of the number of elements

in these tubes. Figure 12(b) shows the truncation of the edges assigned to tubes with one node.

Part (c) displays the result of truncating the edge labeled with a tube with three elements.

Example. Figure 13 displays a Schlegel diagram of the 4D tetrahedral prism ∆3×∆1, viewed as

the base polytope ��G of the pseudograph shown. The six tubes of the pseudograph correspond

to the six facets of ��G. The top two tubes are identified with tetrahedra whereas the other

four are triangular prisms. Figure 14 shows the iterated truncations of ��G needed to convert

it into the pseudograph associahedron KG. The first row shows two edges and three squares of
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( a ) ( b ) ( c )

Figure 12. An iterated truncation of ∆1 × ρ2, resulting in a pseudograph associahedron.

��G being truncated, which are labeled with full tubes. The result, as promised by Lemma 5 is

KGs × ∆1, an associahedral prism. We continue truncating as given by the bottom row, first

two squares with three elements in their tubes, and then two pentagons, with five elements in

their tubes. It is crucial that the truncations be performed in this order, resulting in KG as the

bottom-right most picture.

Figure 13. A tetrahedral prism ��G along with labeling of tubes for its six facets.

4. Edge Contractions

We have shown that any finite pseudographG induces a polytope KG. Our interests now focus

on the discrete deformations of pseudograph associahedra as their underlying pseudographs are

altered. This section is concerned with contraction G/e of an edge e, and the following section

looks at edge deletions.
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Figure 14. An iterated truncation of the 4D tetrahedral prism, resulting in KG.

Definition. An edge (loop) e is excluded by tube Gt if Gt contains the node(s) incident to e

but does not contain e itself.

Definition. Let G be a pseudograph, Gt a tube, and e = (v, v′) an edge. Define

Φe(Gt) =




Gt Gt ∩ {v, v′} = ∅
Gt/e e ∈ Gt

Gt/{v, v′} Gt excludes e
∅ otherwise.

This map extends to Φe : KG → K(G/e), where given a tubing T on G, Φe(T ) is simply the set

of tubes Φe(Gt) of G/e, for tubes Gt in T .
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Figure 15 shows examples of the map Φe. The top row displays some tubings on pseudographs

where the edge e to be contracted is highlighted in red. The image of each tubing under Φe

in G/e is given below each pseudograph. Notice that Φe is not surjective in general since the

dimension of K(G/e) can be arbitrarily higher than that of KG. For example, if G is the

complete bipartite pseudograph Γ2,n with an extra edge e between the two “left” nodes, then

by Theorem 1, KG is of dimension n + 1 whereas K(G/e) is of dimension 2n. Although not

necessarily surjective, Φe is a poset map, as we now show.

( c )( b )( a ) ( e ) ( f )( d )

Figure 15. Top row shows tubings on pseudographs, and the bottom row shows
these tubings under the map Φe, where the red edge e has been contracted.

Proposition 7. For a pseudograph G with edges e and e′, Φe : KG → K(G/e) is a poset map.

Moreover, the composition of these maps is commutative: Φe ◦ Φe′ = Φe′ ◦ Φe.

Proof. For two tubings T and T ′ of G, assume T ≺ T ′. For any tube Gt ∈ T ′, the tube Φe(Gt) is

included in both Φe(T ) and Φe(T ′). Thus Φe(T ) ≺ Φe(T ′), preserving the face poset structure.

To check commutativity, it is straightforward to consider the 16 possible relationships of edges

e and e′ with a given tube Gt of G, four each as in the definition of Φe(Gt). For each possibility,

the actions of Φe and Φe′ commute. �

For any collection E of edges of G, let ΦE : KG → K(G/E) denote the composition of maps

{Φe | e ∈ E}. If E is the set of edges of a connected subgraph H of G, then contracting E will

collapse H to a single node. The resulting pseudograph G/H is the contraction of G with respect

to H. The following describes the combinatorics of the facets of KG based on contraction.

Theorem 8. Let Gs be the underlying simple graph of a connected pseudograph G with r re-

dundant edges. The facet associated to tube Gs in KG is equivalent to

KGs × Pr.

Moreover, the contraction map ΦE : KG → K(G/Gs) restricted to tubings containing Gs is the

canonical projection from the cartesian product onto Pr.

Proof. Let v be the single node of G/Gs, which is a bouquet of n loops. Given a tubing T of the

underlying simple graph Gs, and T ′ a tubing of G/Gs which contains the tube {v}, we define a
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map:

ψ(T, T ′) = T ∪ {Gs} ∪ {(Gt′ − v) ∪Gs | v ∈ Gt′ ∈ T ′} .
This is an isomorphism from the Cartesian product to the facet of KG corresponding to the tube

Gs, which can be checked to preserve the poset structure. The result then follows immediately

from Proposition 3. �

Example. Figure 16(a) shows a pseudograph G with two nodes and seven edges, with one such

edge e highlighted in red. By Proposition 3, we know the pseudograph associahedron KG is

the permutohedral prism P7 × ∆1. The tube given in part (b), again by Proposition 3, is the

permutohedron P6. By the theorem above, we see P6 appearing as a codimension two face of

P7 × ∆1. Figure 16(c) shows a pseudograph G and its underlying simple graph Gs, outlined

in red, and redrawn in (d). The corresponding facet of tube Gs in G is the product of P6, the

pseudograph associahedron of (b), and the pseudograph associahedron KGs of (d).

( a ) ( b ) ( c ) ( d )

Figure 16. Relationships between permutohedra and underlying pseudographs.

5. Edge Deletions

5.1. We now turn our focus from edge contractions G/e to edge deletions G − e. Due to

Theorem 2, we have had the luxury of assuming all our pseudographs to be connected; in this

section, due to deletions of edges, no assumptions are placed on the pseudographs.

Definition. A cellular surjection from polytopes P to Q is a map f from the face posets of P

to Q which preserves the poset structure, and which is onto. That is, if x is a subface of y in P

then f(x) is a subface of or equal to f(y). It is a cellular projection if it also has the property

that the dimension of f(x) is less than or equal to the dimension of x.

In [14], Tonks found a cellular projection from the permutohedron to the associahedron.

In this projection, a face of the permutohedron, represented by a leveled tree, is taken to its

underlying tree, which corresponds to a face of the associahedron. The new revelation of Loday

and Ronco [10] is that this map gives rise to a Hopf algebraic projection, where this algebra

of binary trees is seen to be embedded in the Malvenuto-Reutenauer algebra of permutations.

Forcey and Springfield [9] show a fine factorization of the Tonks cellular projection through a

series of connected graph associahedra, and then an extension of the projection to disconnected
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graphs. Several of these cellular projections through polytopes are also shown to be algebra and

coalgebra homomorphisms. Here we further extend the maps based on deletion of edges to all

pseudographs, in anticipation of future usefulness to both geometric and algebraic applications.

Definition. Let Gt be a tube of G, where e is an edge of Gt. We say e splits Gt into tubes Gt′

and Gt′′ if Gt − e results in two disconnected tubes Gt′ and Gt′′ such that

Gt = Gt′ ∪Gt′′ ∪ {e}.

Definition. Let G be a pseudograph, Gt a tube and e be an edge of G. Define

Θe(Gt) =




Gt if e /∈ Gt

Gt − e if e ∈ Gt and e does not split Gt

{Gt′ , Gt′′} if e splits Gt into compatible tubes Gt′ and Gt′′

∅ otherwise.

This map extends to Θe : KG → K(G − e), where given a tubing T on G, Θe(T ) is simply the

set of tubes Θe(Gt) of G− e, for tubes Gt in T .

Roughly, as a single edge is deleted, the tubing under Θ is preserved “up to connection.” That

is, if the nodes of a tube Gt are no longer connected by edge deletion, Θ(Gt) becomes the two

tubes split by e, as long as these two tubes are compatible. Figure 17 shows maximal tubes on

( a ) ( b ) ( c ) ( d )

Figure 17. The projection Θ factored by graphs, from the complete graph to the path.

four different graphs, each corresponding to a vertex of its respective graph associahedron. As an

edge gets deleted from a graph, the map Θ shows how the tubing is projected. In this particular

case, a vertex of the permutohedron (a) is factored through to a vertex of the associahedron (d)

through two intermediary graph associahedra.

Remark. For a tubing T of G and a loop e of G, we find that the contraction and deletion maps

of e agree; that is, Θe(T ) = Φe(T ).

5.2. We now prove that Θ is indeed a cellular surjection, as desired. The following is the analog

of Proposition 7 for edge deletions.

Proposition 9. For a pseudograph G with edges e and e′, Θe : KG → K(G − e) is a cellular

surjection. Moreover, the composition of these maps is commutative: Θe ◦ Θe′ = Θe′ ◦ Θe.
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Proof. For two tubings U and U ′ of G, assume U ≺ U ′. For any tube Gt ∈ U ′, the tube Θe(Gt) is

included in both Θe(U) and Θe(U ′). Thus Θe(U) ≺ Θe(U ′), preserving the face poset structure.

The map Θ is surjective, since given any tubing U on G− e, we can find a preimage T such

that U = Θe(T ) as follows: First consider all the tubes of U as a candidate tubing of G. If it is

a valid tubing, we have our T. If not, there must be a pair of tubes G′
t and G′′

t in U which are

adjacent via the edge e and for which there are no tubes containing either G′
t or G′′

t . Let U1 be

the result of replacing that pair in U with the single tube Gt = G′
t ∪G′′

t . If U1 is a valid tubing

of G, then let T = U1. If not, continue inductively.

To prove commutativity of map composition, consider the image of a tubing of G under either

composition. A tube of G that is a tube of both G − e and G − e′ will persist in the image.

Otherwise it will be split into compatible tubes, perhaps twice, or forgotten. The same smaller

tubes will result regardless of the order of the splitting. �

Remark. If e is the only edge between two nodes of G, then Θe will be a cellular projection

between two polytopes or cones of the same dimension. Faces will only be mapped to faces of

smaller or equal dimension. However, if e is a multiedge, then G− e is a tube of G. In this case,

the map Θe projects all of KG onto a single facet of KG, where there may be faces mapped to a

face of larger dimension. An example of a deleted multiedge is given in Figure 18. In particular,

the labeled vertex of the polyhedron is mapped by Θe to the labeled edge of the pentagon.

Figure 18. An example of a cellular surjection Θe based on the labeling from Figure 11.

For any collection E of edges of G, denote ΘE as the composition of projections {Θe | e ∈ E}.
Let Γn be the complete graph on n numbered nodes, and let E be the set of all edges of Γn

except for the path in consecutive order from nodes 1 to n. Then ΘE is equivalent to the Tonks

projection [9]. Thus, by choosing any order of the edges to be deleted, there is a factorization

of the Tonks cellular projection through various graph associahedra. An example of this, from

the vertex perspective, was shown in Figure 17.

The same map, from the facet viewpoint, is given in Figure 19. Part (a) shows the permu-

tohedron P4, viewed as KΓ4. A facet of this polyhedron is highlighted and below it is the tube

associated to the facet. Deleting the (red) edge in the tube, thereby splitting the tube into two
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( a ) ( b ) ( c ) ( d )

Figure 19. A factorization of the Tonks projection, where the permutohedron
P4 in (a), through a sequence of collapses, is transformed to the associahedron
in (d). The shaded facets correspond to the shown tubings, and are collapsed as
indicated to respective edges.

tubes, corresponds to collapsing the quadrilateral face into an interval, shown in part (b). A

similar process is outlined going from (b) to (c). Figure 19(c) shows the cyclohedron with three

highlighted faces, each with a corresponding tube depicted below the polyhedron. These are the

three possible tubes such that deleting the (red) edge of each tube produces a splitting of the

tube into two compatible tubes. Such a split corresponds to the collapse of the three marked

facets of (c), resulting in the associahedron shown in (d).

6. Realization

6.1. Let G be a pseudograph without loops. We now present a realization of KG, assigning an

integer coordinate to each of its vertices. From Theorem 1, the vertices of KG are in bijection

with the maximal tubings of G. For each such maximal tubing T , we first define a map fT on

each edge of each bundle of G.

Notation. Let |G| denote the number of nodes and edges of G. For a tube Gt, let V (t) denote

the node set of Gt, and let E(i, t) denote the edges of bundle Bi in Gt.

For a given tubing T , order the edges of each bundle Bi in increasing order by the number

of tubes of T that do not contain each e in Bi. Let e(i, j) refer to the j-th edge in bundle Bi

under this ordering. Thus e(i, j) is contained in more tubes than e(i, j + 1). Let Ge(i,j) be the

largest tube in T that contains e(i, j) but not e(i, j + 1). Since there is no edge e(i, bi + 1) and

thus no tube containing it, we define Ge(i,bi) to be the entire pseudograph G. We assign a value
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fT to each edge in each bundle of G, as follows:

fT (e(i, j)) =




c +
bi−1∑
x=1

(
2
∣∣G−Ge(i,x)

∣∣ − 1
)

j = 1

c j−1 · (c− 1) −
(

2
∣∣G−Ge(i,j−1)

∣∣ − 1
)

j 	= 1

for the constant c = |G|2. We assign fT (v) to each node of G recursively by visiting each tube

of T in increasing order of size and ensuring that for all nodes and edges x ∈ Gt,∑
x∈Gt

fT (x) = c |V (t)| +
∑

i

c |E(i,t)| + |G−Gt|2 .

Theorem 10. Let G be a pseudograph without loops, with an ordering v1, v2, . . . , vn of its nodes,

and an ordering e1, e2, . . . , ek of its edges. For each maximal tubing T of G, the convex hull of

the points

(6.1)
(
fT (v1), . . . , fT (vn), fT (e1), . . . , fT (ek)

)

in R
n+k yields the pseudograph associahedron KG.

The proof of this is given at the end of the paper.

6.2. We now extend the realization above to pseudographs with loops. In particular, we show

every pseudograph associahedron with loops can be reinterpreted as an open subcomplex of one

without loops, via a subtle redescription of the loops.

Definition. For G a connected pseudograph with loops, define an associated loop-free pseudo-

graph G⊗ by replacing the set of loops attached to node v by a set of edges between v and a

new node gv. We call gv a ghost node of G⊗. An example is given in Figure 20.

Figure 20. A pseudographG and its associated loop-free version G⊗. The ghost
nodes are shaded.

Proposition 11. For a connected pseudograph G with loops, the pseudograph associahedron KG
can be realized as an open subcomplex of KG⊗.

Proof. The canonical poset inclusion φ : KG → KG⊗ replaces any loop of a tube by its associated

edge in G⊗. This clearly extends to an injection preserving inclusion of tubes, revealing KG as

a subposet of KG⊗. Moreover, since covering relations are preserved by φ, KG is a connected

subcomplex of KG⊗. Indeed, this subcomplex is homeomorphic to a half-space of dimension
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n − 1 + r, where r is the number of redundant edges of G⊗. To see this, note the only tubings

not in the image of φ are those containing the singleton ghost tubes. In KG⊗, those singleton

tubes represent a collection of pairwise adjacent facets since, by construction, the ghost nodes

are never adjacent to each other. Therefore the image of φ is a solid polytope minus a union of

facets which itself is homeomorphic to a codimension one disk. �

Corollary 12. The compact faces of KG correspond to tubings which exclude all loops.

Proof. For any tubing of T in KG not excluding a loop, φ(T ) will be compatible with the

singleton ghost tube in KG⊗. �

As an added benefit of Theorem 10 providing a construction of the polytope KG⊗, one gets

a geometric realization of KG as a polytopal cone, for pseudographs G with loops. The result

is summarized below, the proof of which is provided at the end of the paper. Note that in

addition to the combinatorial argument, we also see evidence that KG is conal: If the removal

of one or more hyperplanes creates a larger region with no new vertices, then that region must

be unbounded.

Corollary 13. The realization of KG is obtained from the realization of KG⊗ by removing the

halfspaces associated to the singleton tubes of ghost nodes.

Example. If G is a path with two nodes and one loop, then G⊗ is a path with three nodes.

Figure 21(a) shows the 2D associahedron KG⊗ from Figure 1(a), where the right most node of

the path G⊗ can be viewed as a ghost node. Part (b) shows KG as seen in Figure 4(b). Notice

that the facet of KG⊗ corresponding to the tube around the ghost node is removed in (a) to

form the open subcomplex of (b).

( b )( a )

Figure 21. (a) The polygon KG⊗ and (b) the polygonal cone KG.
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Example. A 3D version of this phenomena is provided in Figure 22. Part (a) shows the 3D

associahedron, viewed as the loop-free version KG⊗ to the pseudograph associahedron KG of part

(b). Indeed, the two labeled facets of (a), associated to tubes around ghost nodes, are removed

to construct KG. The construction of KG from iterated truncations is given in Figure 12.

( b )( a )

Figure 22. (a) The associahedron KG⊗ and the (b) polyhedral cone KG, where
the faces of KG⊗ associated to tubes around ghost nodes have been removed.

Example. A similar situation can be seen in Figure 6, part (a) showing the permutohedral

prism KG⊗ and part (b) the cone KG after removing the back face of the prism.

7. Proofs

7.1. The proof of Theorem 6 is now given, which immediately gives a proof of Theorem 1. We

begin with a description of the structure of ��∗
G, the polytope given in (3.1). The faces of ��∗

G

inherit tubings based on their representation as a product of faces:

(1) In the graph associahedron KGs, the faces correspond to sets of compatible tubes, or-

dered by reverse inclusion.

(2) In the simplex �bi−1 associated to bundle Bi, the faces correspond to sets of edges in

the bundle, ordered by inclusion.

Thus each face of ��∗
G is assigned a tubing T in which each tube is labeled with the same set of

edges. The ordering on such tubings Ta and Tb is defined by the orderings on each component

in the product structure, where Ta ≺ Tb if and only if there exists some tubing Tc ⊂ Ta such

that Tb can be obtained by adding a particular set of edges to the labeling of each tube in Tc.

In order to describe the effect of truncation on these tubings, we define promotion, an operation

on sets of tubings that was developed in [3, Section 2].

Definition. The promotion of a tube Gt in a set of tubings T means adding to T the tubings

{T ∪ {Gt} | T ∈ T, Gt is compatible with all Gt′ ∈ T} .



PSEUDOGRAPH ASSOCIAHEDRA 21

Note that this T may be empty. The new tubings are ordered such that T ∪ {Gt} ≺ T , and

T ∪ {Gt} ≺ T ′ ∪ {Gt} if and only if T ≺ T ′ in T.

All valid combinations of full tubes of G already exist as faces of ��∗
G. They are also already

ordered by containment. Therefore, we may first conclude from this definition that promoting

the non-full tubes is sufficient to produce the set of all valid tubings of G, resulting in KG.

Given a polytope whose faces correspond to a set of tubings, promoting a tube GF is equivalent

to truncating its corresponding face F so long as the subset of tubings compatible with GF

corresponds to the set of faces that properly intersect or contain F . Verifying this equivalence

for each prescribed truncation is sufficient to prove the theorem.

Proof of Theorem 6. We may proceed by induction, relying on the description of ��∗
G above and

leaving the computations of intersections to the reader. Consider the polytope P in which all

the faces before F in the prescribed order have been truncated. Suppose that until this point,

the promotions and truncations have been equivalent, that is, there is a poset isomorphism

between the base polytope after a set of truncations and the sets of base tubings after the set

of corresponding tubes are promoted. Note that in P , the faces that intersect (but are not

contained in) F are

(1) faces that properly intersected or contained F in ��∗
G

(2) faces corresponding to tubes promoted before GF and compatible with GF .

Since faces created by truncation inherit intersection data from both the truncated face and the

intersecting face, we may include (by induction if necessary) any intersection of the above that

exists in P . Conversely, the faces that do not intersect F in P are

(1) faces that did not intersect F in ��∗
G

(2) faces that did intersect F but whose intersection was contained in a face truncated before

F and was thus removed

(3) faces corresponding to tubes promoted before GF but incompatible with GF

(4) any intersection of the above that exists in P .

We have given a description of when no intersection exists between two faces in ��∗
G, as case (1)

above. Most tubings incompatible with GF can be shown to belong to such a group. Some tubes

Gt that intersect GF fall into case (2), where their intersection corresponds to {Gt, Gt ∩GF }. It

is contained in the face corresponding to {GF ∩Gt}, a face found before GF in the containment

order. Thus no intersection is present in P .

The tubings compatible with GF correspond to the faces that properly intersect or contain

F . Promoting GF and truncating F will produce isomorphic face/tubing sets. The conclusion

of the induction is that the prescribed truncations will produce a polytope isomorphic to the set

of tubings of G after all non-full tubes have been promoted, resulting in KG. �
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7.2. We now provide the proof for Theorem 10. As before, let G be a pseudograph without

loops, and let T be a maximal tubing of G. Moreover, let conv(G) denote the polytope obtained

from the convex hull of the points in Equation (6.1). Close inspection reveals that conv(G) is

contained in an intersection of the hyperplanes defined by the equations:

hV :
∑
v∈V

fT (v) = c|V |

hBi :
∑
e∈Bi

fT (e) = cbi

where |V | is the number of nodes of G. To each tube Gt ∈ T , let

Λ(Gt) = c |V (t)| +
∑

i

c |E(i,t)| + |G−Gt|2 .

These Λ(Gt) functions define halfspaces which contain the vertices associated to that tube:

h+
t :

∑
x∈Gt

fT (x) ≥ Λ(Gt) .

Proving that conv(G) has the correct face poset as KG is mostly a matter of showing the

equivalence of conv(G) and the region

H(G) := hV ∩
⋂
i

hBi ∩
⋂

Gt∈T

h+
t .

Definition. Two tubes Ga and Gb of G are bundle compatible if for each i, one of the sets

E(i, a) and E(i, b) contains the other. Note that the tubes of any tubing T are pairwise (possibly

trivially) bundle compatible.

Lemma 14. Let Ga and Gb be adjacent or properly intersecting bundle compatible tubes. Suppose

their intersection is a set of tubes {G∧i}, while G∨ is a minimal tube that contains both. Let E∨
be the set of edges contained in G∨ but not Ga or Gb. Then for any tubing T containing G∨,

Λ(Ga) < Λ(G∨) − Λ(Gb) +
∑

i

Λ(G∧i) −
∑
e∈E∨

fT (e).

Proof. The intersections with each bundle contribute equally to both sides. If G∨ contains more

nodes than the others, then we simply note the dominance of the c|V (∨)| term and place bounds

on the remaining ones. If not, the sides are identical up to the |G −Gt|2 terms, which provide

the inequality. �

Lemma 15. For any tubing T , and any tube Gt,

(7.1)
∑
x∈Gt

fT (x) ≥ Λ(Gt)

with equality if and only if Gt ∈ T . In particular, conv(G) ⊆ H(G), and only those vertices of

conv(G) that have Gt in their tubing are contained in ht.



PSEUDOGRAPH ASSOCIAHEDRA 23

Proof. If Gt ∈ T , the equality of Equation (7.1) follows directly from the definition of fT .

Suppose then that Gt /∈ T . We proceed by induction on the size of Gt. First, produce a tube Gσ

which contains the same nodes as Gt, and the same size intersection with each bundle, but is

bundle compatible with the tubes of T . Naturally Λ(Gσ) = Λ(Gt), but since fT is an increasing

function over the ordered e(i, j) edges of G, we get∑
x∈Gt

fT (x) ≥
∑

x∈Gσ

fT (x)

with equality only if Gt = Gσ .

Let G∨ be the smallest tube of T that contains Gσ (or all of G if none exists). If G∨ = Gσ then

the inequality above is strict and the lemma is proven. Otherwise the maximal subtubes {G∨i}
of G∨ are disjoint, and each either intersects or is adjacent to Gσ. If we denote the intersections

as {G∧i} and the set of edges of G∨ contained in none of these subtubes by E∨, then as a set,

Gσ = G∨ −
⋃
i

G∨i +
⋃
i

G∧i −
⋃

e∈E∨

fT (e) .

The tubes mentioned in the right hand side are all in T , except perhaps the intersections.

Fortunately, the inductive hypothesis indicates that∑
x∈G∧i

fT (x) ≥ Λ(G∧i) .

Thus we are able to rewrite and conclude∑
x∈Gσ

fT (x) ≥ Λ(G∨) −
∑

i

Λ(Gi) +
∑

i

Λ(G∧i) −
∑

fT (ei) > Λ(Gt)

by repeated applications of Lemma 14. �

Lemma 16. H(G) ⊆ conv(G).

Proof. Particular half spaces impose especially useful bounds of the value of certain coordinates

within H(G). For instance, if Gw is a full tube, then

h+
w :

∑
v∈V (w)

fT (v) ≥ c|V (w)| + |G−Gw|2 .

Choosing the maximal tube Gx that intersects bundle Bi in a particular subset of edges X

produces

h+
x :

∑
e∈X

fT (e) ≥ c|X| + |G−Gx|2 .

Applying these to single nodes and single edges gives a lower bound in each coordinate. The

hyperplanes hV and hBi supply upper bounds, so H(G) is bounded.

Suppose H(G) − conv(G) is not empty. Since conv(G) is convex, by construction, H(G) −
conv(G) must have a vertex v∗ outside conv(G), at the intersection of several ht hyperplanes.

These hyperplanes correspond to a set T ∗ of tubes of G. This T ∗ contains at least one pair of

incompatible tubes Ga and Gb, for otherwise it would be a tubing and v∗ would be in conv(G).
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(1) If Ga and Gb are bundle incompatible in some bundle Bi, then we produce the maximal

tube Gu that intersects Bi in E(i, a) ∪ E(i, b). As above, Gu produces a bound on the

E(i, u) coordinates, yielding

h+
u :

∑
e∈E(i,u)

fT (e) ≥ c|E(i,u)| + |G−Gu|2 .

The half spaces h+
w and h+

x above produce lower bounds on the sum of the vertex co-

ordinates of Ga and Gb. Subtracting these from Λ(Ga) and Λ(Gb) leaves a maximum

of

c|E(i,a)| + |G−Ga|2 + c|E(i,b)| + |G−Gb|2

for
∑

E(i,a) fT (e) and
∑

E(i,b) fT (e), which is insufficient for the Gu requirement above.

We conclude that v∗ is either outside h+
u or outside one of the halfspaces h+

w or h+
x .

Either way, v∗ is not in H(G).

(2) On the other hand, if Ga and Gb are bundle compatible, Lemma 14 can be rearranged:

Λ(G∨) > Λ(Ga) + Λ(Gb) −
∑

i

Λ(G∧i) +
∑

e∈E∨

fT (e) .

Thus v∗ is either not in one of the h+
∧i

or not in h+
∨ . Therefore v∗ is not in H(G).

This contradiction proves the Lemma. �

Proof of Theorem 10. Lemmas 15 and 16 show that conv(G) = H(G). Consider the map taking

a tubing T of G to the face

conv(G) ∩
⋂

Gt∈T

ht

of conv(G). By Lemma 15, each tubing maps to a face of conv(G) containing a unique set of

vertices. Each face is an intersection of hyperplanes that contains such a vertex (and hence

corresponds to a subset of a valid tubing). Since it clearly reverses containment, this map is an

order preserving bijection. �

Proof of Corollary 13. We remark that notation (and the entire reasoning) in this proof is being

imported from the proof of Lemma 16. If v is a ghost node, then it is not Gw, Gx or Gu for

a pair of bundle incompatible tubes (since those tubes all have at least two nodes). It also is

neither G∨ nor G∧i for any pair of bundle compatible tubes. Thus h+
t excludes no intersection

of hyperplanes. Its removal creates no new faces, and removes only those faces corresponding

to tubings containing v. The identification of these faces is the canonical poset inclusion φ from

the proof of Proposition 11. �
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