
Project Summary: Geometric combinatorial Hopf algebras and modules.
Greater understanding leads to greater utility. Electric lighting existed prior to the theory of

quantum electrodynamics. The theory, however, certainly extends our understanding of electrons
and photons—and now we can take images of the magnetic resonances in the brain of a cancer pa-
tient. Successful calculations using the techniques of renormalization were performed for nearly half
a century without the help of Hopf algebras. The discovery of Hopf algebras underlying renormal-
ization, however, allowed researchers to put renormalization on a firm mathematical footing—and
enables current application to other quantum field theories, including quantum gravity. In this
same spirit we are convinced that greater understanding of the crucial mathematical ingredients of
the Connes-Kreimer algebra, as well as its place in a larger family of structures, will be extremely
valuable. The goal of this proposed project is to understand ways in which Hopf structures are pre-
dicted by the geometric combinatorics of graphs and their subgraphs. Specifically we plan to study
a large family of generalizations of both the Loday-Ronco and the Malvenuto-Reutanauer Hopf
algebras. Our new algebras arise both from interesting sequences of Devadoss’s graph-associahedra
and from new combinatorial polytopes. In addition, we plan to carry this program further to the
study of Hopf modules arising from the graph-multiplihedra and their quotients. A third, parallel
stage consists of investigating the applicability of our discoveries to the geometric combinatorics of
cluster algebras on one hand and nested complexes on the other.

Renormalization refers to a family of algorithms that generate counterterms to deal with di-
vergences arising from loops in the Feynman diagrams. Divergences can be nested, disjoint or
overlapping, but the overlapping divergences can be resolved into nested or disjoint. The opera-
tions of product, coproduct and antipode in the Hopf algebra of Feynman diagrams rely on insertion
of and restriction to subdiagrams. The residue after extraction of a subgraph also appears in the
formula as a reconnected complement. Here is the formula for coproduct applied to a Feynman
diagram Γ with subdiagrams γ, including the empty and trivial subdiagrams:

∆Γ =
∑
γ⊂Γ

γ ⊗ Γ/γ

Here Γ/γ is the diagram achieved by removing γ and then reconnecting the vertices of the graph
that were connected through γ.

We have noticed analogous features in geometric combinatorics. For example, in the theory
of graph-associahedra, given a graph G on n + 1 nodes an n-dimensional convex polytope KG

is constructed. Lower dimensional faces correspond to collections of subgraphs for which each
pair is either nested or disjoint. The geometry of faces is described by restricting the polytope
construction to subgraphs and to their reconnected complements. The formula for the facet of a
graph-associahedron corresponding to a connected subgraph t of a graph G is Kt×KG/t where G/t

is again the reconnected complement. Each facet corresponds to a connected subgraph, so we can
write:

KG =
⋃
t⊂G

Kt ×KG/t.

The situation is more complicated than suggested by a simple analogy. Sequences of polytopes
such as the permutohedra and the associahedra (which both underlie important Hopf algebras)
enjoy special recursive properties. The first portion of our plan will involve extension of those
properties in various directions: to graph associahedra, Postnikov’s generalized permutohedra, and
to Fomin and Zelevinsky’s generalized associahedra. The second broad area of inquiry will be in
colored versions of the combinatorial objects, the multiplihedral polytopes they form, and the Hopf
modules they underlie.
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