
Description: Algebraic combinatorics and convex geometry.

1. Introduction

The field of geometric combinatorics, and combinatorial polytopes in particular, has recently
received a good deal of attention. Convex polytopes whose faces correspond to combinatorial
constructions have arisen in a broad spectrum of pure and applied areas. They are tied to the
structures of Hopf algebras and monoids on one side, while forming the foundation of linear
programming on the other.

We have recently discovered a new “genus” of convex polytopes which both unites and
extends the list of existing species. We propose three levels of new research. The first is an
attack on well known open problems. These problems include specific open conjectures about
relatives of the permutahedra and associahedra, as well as fundamental open questions about
general polytopes. For questions about the diameters of convex polytopes our new constructions
potentially provide illuminating counterexamples. In the narrower field of infinite polytope
families our new examples have a reasonable chance at providing proofs of several conjectured
polytope sequences.

At a second level we will prove that many of our new examples underlie algebraic structures:
Hopf algebras, coalgebras and Hopf modules. Some of the polytopes just now being proven to be
convex arose at first as examples of a general theorem: our research group proved that the Hopf
algebraic structure can be predicted by the existence of a graded Hopf operad structure. The sets
of vertices, of what we now know are convex polytope sequences, possess the latter structure.
Now we ask whether the operad structure exists for the entire genus of polytopes we study, and
whether it can always be extended to the sets of higher dimensional faces. Simultaneously we
will demonstrate that their vertex sets support order structure as well–posets and lattices–and
that these algebraic structures and ordered structures interact conveniently.

Finally, we will propose applications via exploiting some nice maps that we have noticed
while developing our new polytopes. Several polytope families we have studied have potentially
valuable interpretations: as molecular constructions (polyhexes), as phylogenetic trees, and as
topological bases for networks.

At each stage we will highlight the broader impact of the project by pointing out the role
student researchers will play. Master’s and undergraduate students have already been extremely
active in all parts of the research. One master’s thesis and one honor’s thesis dealt with new
Hopf structures on the cyclohedra. Another master’s thesis and another separate honor’s thesis
gave initial results about polytopes based on CW-complexes. There are two more master’s
students currently working on theses about the topics we are about to explore. Among future
open questions to be assigned to students are: What are the geometrical properties of the
realizations of various polytopes–centers, volumes, symmetries, edge lengths and facet areas?
Also of interest are the combinatorial properties–numbers of vertices, numbers of faces, numbers
of triangulations, and space tiling properties.

1



2

1.1. What we found–poset polytopes and liftings. For any poset P we define two com-
binatorial constructions that are built from special lower sets of the poset. The polytopes
that result cover a wide swath of existing examples from geometric combinatorics, including
the permutahedra, associahedra, multiplihedra, graph-associahedra, nestohedra, pseudograph
associahedra, and their liftings.

An n-dimensional permutahedron is the convex hull of the points formed by the action of a
finite reflection group on a arbitrary point in Euclidean space. The classic example is the convex
hull of all permutations of the coordinates of the Euclidean point (1, 2, . . . , n−1). Changing edge
lengths while preserving their directions results in a generalized permutohedron, as defined by
Postnikov [23, 22]. An important subclass of these is the nestohedra [29]. Nestohedra have the
feature that each of their faces corresponds to a specific combinatorial set, and the intersection
of two faces corresponds to the union of the two sets. For a given set S each nestohedron
N (B) is based upon a given building set B ⊂ P(S), whose elements are known as tubes. B

must contain all the singletons of S and must also contain the union of any two tubes whose
intersection is non-empty. Then a face of the nestohedron corresponds to a nested set F . F is
a subset of B for which each pair of tubes is compatible (either one is contained in the other or
their union is not in B) and for which any collection of disjoint tubes must not have a union in
B.

Our first new family of convex polytope are a generalization of nestohedra via a generalization
of building sets. Rather than starting with a set S we begin with a poset P. For a subset A of
poset P , define the lower set of A as τA := {b ∈ P | b ≤ a for some a ∈ A}. A lower set with
unique maximal element a is called a cell τa, having boundary ∂τa := τa − a.

Definition 1.1. Let ba := {b ∈ P | ∂τa = ∂τb} be the bundle of the cell τa. A lower set is
filled if, whenever it contains the boundary ∂τa of a cell, it also intersects the bundle ba of that
cell.

Definition 1.2. Definition. A tube is a filled, connected lower set. A tubing T is a collection
of tubes (not containing all of P ) which are pairwise disjoint or pairwise nested, and for which
the union of every subset of T is filled.

Examples of tubes and tubings are seen in Figure 1.

) d () c () b () a (

Figure 1. Here is a Hasse diagram of a poset with various lower sets circled.(a)
and (b) are not valid tubings, since both fail to be filled. (c) and (d) are tubings.

Theorem 1.3. . Let P be a poset, where B = {b1, . . . ,bk} is the set of bundles of P . Let
π(P ) be the poset of tubings of P ordered by containment. The poset associahedron KP is a
convex polytope of dimension |P | − k whose face poset is isomorphic to π(P ).

We believe we have a nice inductive proof of this main theorem, which should be published
soon. Induction is on the number of elements in the poset: as a new maximal element is added
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new facets are added to the polytope depending on which lower sets are now tubes. Figures 2, 3
and 4 show some examples.
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Figure 2. On the left is a poset, shown as a Hasse diagram. On the right is its
poset associahedron, with labeled facets corresponding to tubes of the poset.
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Figure 3. On the left is another poset. On the right is its poset associahedron,
with labeled facets again corresponding to tubes of the poset.

The poset polytopes we have introduced cover many of the known varieties of simple poly-
topes: permutohedra, associahedra, graph-associahedra, nestohedra and pseudograph-associahedra,
as seen in [5], all correspond to certain sub-classes of posets. In fact, all these types are from rank
two posets. Nestohedra come from posets of rank two with all bundles of size one. Pseudograph-
associahedra come from posets of rank two with only one or two minimal rank elements covered
by each maximal element. Newly discovered are the CW-complex associahedra. Example
graphs, pseudographs, CW-complexes and building sets are show together with their posets
in Figure 5, and with tubes in Figure 6. (We even have some examples of V. Pilaud’s brick
polytopes that fit into the poset polytope picture [21]. Determining whether all brick polytopes
are poset polytopes, or vice versa, might be a crucial step in the first stage of our research
program.)

1.2. CW-complex associahedra. When the poset P is the face poset of a cell complex, then
the poset associahedron is labeled by sub-complexes.
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f = 68, 136, 88, 20

3d facet with 2 octagons   

Figure 4. Here is a 4d example. The poset associahedron is shown above the
poset it comes from. The f-vector is given, and one of the facets is shown. This
example is likely a polytope that is completely new; it appears neither as a
nestohedron nor a pseudograph associahedron.
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Figure 5. Various posets whose tubings give famous combinatorial polytopes.
Left to right: star graph, fan graph, pseudograph, CW-complex (the capital
letters are 2-cells) and a building set (certain kind of hypergraph).

Example 1.4. Let X be the cell complex with two 2-cells (labeled A and B), two 1-cells (labeled
a and b), and two 0-cells (labeled 1 and 2); where ∂A = ∂B = a∪ b∪ 1∪ 2 and ∂a = ∂b = 1∪ 2.
The tubes of X are: 1, 2, 12a, 12b, 12abA, 12abB. Each tube is compatible with every tube that
has a different number of cells in it, and KX is the 3-dimensional cube. See Figure 7.

Example 1.5. Let X be the cell complex with two 2-cells (labeled A and B), three 1-cells (labeled
a,b, and c), and two 0-cells (labeled 1,2, and 3); where ∂A = ∂B = a ∪ b ∪ c ∪ 1 ∪ 2 ∪ 3 and
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Figure 6. The same posets as in Figure 5, here shown with a tube on the poset
and the corresponding tube in the corresponding combinatorial object.
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Figure 7. The 3-dimensional cube as a cellohedron.

∂a = 1∪2, ∂b = 2∪3, and ∂c = 1∪3. The tubes of X are: 1, 2, 3, 12a, 23b, 13c, 123abA, 123abB.
The tubes 123abcA and 123abcB are compatible with every tube but each other, and the rest of
the tubes are compatible with only two other tubes. KX is the hexagonal prism. See Figure 8.

1.3. Lifting and multiplihedra. A lifting of a generalized permutahedron, and a nestohedron
in particular, is a way to get a new generalized permutahedron of one greater dimension from
a given example, using a factor of q ∈ [0, 1] to produce new vertices from some of the old ones.
This procedure was first seen in the proof, by the P.I., that Stasheff’s multiplihedra complexes
are actually realized as convex polytopes–answering a long-standing open question [11].

Soon afterwards the lifting procedure was applied to the graph associahedra–well-known
examples of nestohedra first described by Carr and Devadoss–in a collaboration between the
P.I. and Devadoss. We completed an initial study of the resulting polytopes, dubbed graph
multiplihedra JG, published as [8].

This application raised the question of a general definition of lifting using q. At the time
it was also unknown whether the results of lifting, then just the multiplihedra and the graph-
multiplihedra, were themselves generalized permutahedra. These questions were both answered
in the recent paper of Ardila and Doker [4]. They defined nestomultiplihedra and showed that
they were generalized permutohedra of one dimension higher in each case. They also show
that the domain quotients of the nestomultiplihedra are generalized permutohedra. Several
new questions were raised by Ardila and Doker, including the question of the unimodality of
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Figure 8. The hexagonal prism as a cellohedron.

the polynomials which give volumes of the new polytopes. Another question, that they do
not address, is whether the range quotients of the lifted polytopes are themselves generalized
permutohedra. These are also known as the cubeahedra in [10], and are simple polytopes–
whereas the multiplihedra and their domain quotients are often non-simple.

Combinatorially, lifting occurs when the notion of a tube is extended to include markings.

Definition 1.6. A marked tube of P is a tube with one of three possible markings:

(1) a thin tube given by a solid line,
(2) a thick tube given by a double line, and
(3) a broken tube given by fragmented pieces.

Marked tubes u and v are compatible if

(1) they form a tubing and
(2) if u ⊂ v where v is not thick, then u must be thin.

A marked tubing of P is a tubing of pairwise compatible marked tubes of P . Examples of
marked tubes are seen in Figure 9.

Although the original poset associahedron is a simple polytope its lifting is not in general
simple. The proof that this always gives a convex polytope will be a little more difficult, but
should follow the examples of special cases shown so far. In 2004 it was discovered by J.L. Loday
that a simple algorithm existed for finding the actual points in space that are the vertices of
the associahedron [18]. This algorithm was generalized to the multiplihedra and composihedra
by the P.I. in [11], and to the graph-multiplihedra and their range and domain quotients in [8].
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Figure 9. On the left is the polytope labeled by tubings of the pseudograph,
and on the right is its lifting, labeled by marked tubings.

2. Problem solving I: proving conjectured sequences of convex polytopes.

The first stage of research beyond investigating and classifying the poset polytopes themselves
is to try and use them to prove several conjectures. The conjectures are: that the complex of
multitriangulations of a polygon form convex polytopes, that the complexes of leveled trees
grafted to binary trees or leveled trees form convex polytopes, and that the complex of ordered
forests of leveled trees form convex polytopes. For each of these conjectures our approach is
to find posets whose polytopes, or their liftings, are isomorphic (as posets) to the complex in
question. We have high hopes that this attack is likely to succeed, because it has already in
several similar cases.

We’ll begin with the grafted, or painted, trees–since this is where we have some definite
success. Three types of planar rooted trees are well known to underlie three infinite families:
leveled trees underlie the permutohedra, binary trees underlie the associahedra and combed
trees (also drawn as corollas) have only one representative for each number of leaves, so they
underlie the natural numbers. Grafting a pair of these types of trees together, while retaining
their distinguishing characteristics, is described nicely by the composition of species in [12].
Figure 10 shows the possible ways to graft two of these types of trees. We immediately wonder
whether the grafted combinatorics leads to a new polytope family in each case. Figure 11 shows
that we do in dimension 3, and that we know several cases in all dimensions.

Recently (in unpublished work with M. Ronco and our students) we were able to show that
the complex of binary trees grafted to leveled trees, and the complex of combed trees grafted
to leveled trees, are both isomorphic to certain poset polytopes. The posets in question are
those for the fan graphs and the star graphs, as seen in Figure 5. This result answers the two
open questions, and also suggests a new area of research in Hopf algebras (see Section 3.4. The
latter is due to the fact that the complexes of grafted trees were originally introduced as Hopf
algebras–now our bijection shows how to multiply and comultiply in the world of tubes and
tubings. More information may soon flow both ways: new geometric realizations of the grafted
tree complexes may provide new realizations of graph-associahedra.

Figure 12 shows the correspondence, exemplified in dimension 3, between the combed trees
grafted to leveled trees and tubings of the star graph. Figure 13 shows the correspondence,
exemplified in dimension 3, between the binary trees grafted to leveled trees and tubings of the
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Figure 10. Varieties of grafted, hybrid trees. Each diagonal shares a type of
tree on the bottom (shaded) or a type of tree grafted on, as indicated by the
labels. These are the vertex labels of the polytopes shown in Figure 11.

fan graph. We omit for brevity all but the demonstration of the bijection for the vertices, but
it is not hard to extend it to all the faces of the respective polytopes.

This combinatorial equivalence we recently discovered shows that the Hopf algebra (described
in [12] and coming up next in this proposal) is both based on the vertices of convex polytopes
and is nicely represented by operations on star-graph tubings.

Of course we plan to look for similar bijections that can settle the question of convexity for
the conjectured polytope sequences in Figure 11.

2.1. Plans for more–multiassociahedra, species composition, biassociahedra. A mul-
titriangulation of a polyogon is a set of diagonal edges connecting pairs of vertices. Specifically
a k-triangulation of an n-gon is a set of diagonals such that no more than k of the edges are
mutually crossing. For a given value of n ordering the k-triangulations by inclusion of edges
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gives a simplicial, spherical complex. Thus its polar is potentially a simple polytope, but this
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d
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C

Figure 11. the 3d terms of some new and old polytope sequences. The four
in the shaded diamond are the cube, associahedron K, multiplihedron J and
composihedron CK. The other two shaded are the pterahedron Pt (fan graph as-
sociahedron) and the stellahedron JGd. The topmost is the permutohedron and
the others are conjectured to be polytopes (clearly they are in three dimensions–
the conjecture is about all dimensions.) Each of these corresponds the type of
tree shown in Figure 10, in the corresponding position.
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Figure 12. Two pictures of the stellohedron in 3d: trees and graph tubings.

Figure 13. Two pictures of the pterahedron in 3d: trees and graph tubings.

has only been proven in special cases. 1-triangulations give the famous associahedra, and k-
triangulations of the (2k + 3)-gon correspond to the cyclic polytopes with 2k + 3 vertices in
dimension 2k.

We plan to find specific posets whose associated simple polytopes are the (polars of) multi-
associahedra. We know which posets correspond to the 1-triangulations of polygons and thus
the associahedra: these are the rank two posets which realize the inclusion of nodes in edges
of the path graph. An obvious first choice for the multiassociahedra is the path graph with
multiedges. We also are looking for the cyclic polytopes with 2k + 3 vertices in dimension 2k,
realized as poset polytopes.

Two more conjectured varieties of convex polytope sequence we plan to try to find as poset
associahedra or their liftings are 1) biassociahedra and bimultiplihedra as seen in [27], and 2)
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pairahedra as seen in [28] (in the case of pairahedra there is some doubt as to whether the
conjecture has been solved.)

The lifting of the permutahedron is again the permutahedron, one dimension higher. This is
restated as the fact that the graph multiplihedron of the complete graph is the permutahedron.
A new set of quotient polytopes arises from the deletion of the edges of the complete graph, and
the forgetting of thick and thin structure. This can proceed as a two-stage process, equating
the tubings that originally differed only within thick tubes, and then equating the tubings that
differed only in thin tubes. Or we could factor in the other order. For an example of the two
options see the top four maps of Figure 14. Of course the plan is for students to study the
algebraic structure of these new polytopes.

JG

P

JGr
JG
d

Figure 14. The commuting diamond of polytopes for G the edgeless graph on
three nodes.

3. Applications

3.1. Hopf algebras. A combinatorial sequence that is created by a recursive process often
carries the seed of a graded algebraic structure. An algebra reflects the process of building a new
object from prior ones; and a coalgebra arises from de-constructing an object into its constituent
components. We are building upon the foundations laid by many other researchers, especially
Gian-Carlo Rota, who most clearly saw the strength of this approach. This proposal will
transition between new polytopes, newly defined operadic structure, and the newly discovered
algebras. At each stage we will highlight the broader impact of the project by pointing out the
role student researchers will play.
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3.2. Review of important Hopf algebras based on trees. The historical examples of Hopf
algebras SSym and QSym, the Malvenuto-Reutenauer Hopf algebra and the quasisymmetric
functions, can be defined using graded bases of permutations and boolean subsets respectively.
Loday and Ronco used the fact that certain binary trees can represent both sorts of combina-
torial objects to discover an intriguing new Hopf algebra of planar binary trees, YSym, lying
between them. [18, 19]. They also described natural Hopf algebra maps which neatly factor
the descent map from permutations to boolean subsets. Their first factor turns out to be the
restriction (to vertices) of the Tonks projection from the permutohedron to the associahedron.
Chapoton made sense of this latter fact when he found larger Hopf algebras based on the faces
of the respective polytopes [7].

Much more of the structure of these algebras has been uncovered in the last decade. In 2005
and 2006 Aguiar and Sottile used alternate bases for the Loday-Ronco Hopf algebra and its
dual to construct explicit formulas for primitive elements [3],[2]. Several descriptions of the big
picture of combinatorial Hopf algebras have put these structures in perspective, notably [1],
and [14], and most recently the preprint of Loday and Ronco [17].

3.3. New insights into SSym, YSym and divided powers. In our recent paper [13] we take
the novel point of view of graph associahedra from which to study these algebras. First we show
how the Hopf algebras SSym and YSym and the face algebras ˜SSym and ˜YSym containing
them can be understood in a unified geometrical way, via cellular surjections and recursive facet
inclusion. For an example of the product of basis elements of SSym, see Figure 15. Then we
capitalize on that unified viewpoint to build analogous algebraic structures on the vertices and
faces of the cyclohedra and simplices, which we describe below in Section 3.7.
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Figure 15. Multiplying in SSym. The theme of [13] is that the product of two
faces from a given recursive sequence of polytopes, here from terms Pi and Pj of
the permutohedra, is described as a sum of faces of the term Pi+j . The summed
faces in the product are the images of maps which embed a cartesian product of
the earlier terms of {Pn} .
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Now, in [12], we introduce a new characterization of SSym,YSym and the divided power
Hopf algebra. The latter is denotedK[x] := span{x(n) : n ≥ 0}, with basis vectors x(n) satisfying
x(m) · x(n) =

(
m+n
n

)
x(m+n), 1 = x(0), ∆(x(n)) =

∑
i+j=n x

(i) ⊗ x(j).

Our new point of view sees all three of these as graded Hopf operads, which are graded monoids
in the category of coalgebras, with the monoidal structure given by the composition product.
In other words, they are simultaneously operads and coalgebras using the same grading, and
with operad compositions required to be coalgebra morphisms. This implies their Hopf algebra
structure. The coproduct is already given and the product is via first applying the coproduct
n times to the first operand, where n is the rank of the second operand. Then the composition
of the operad is applied. In terms of trees, the first operand is split into a forests of n trees,
and then these are grafted to the leaves of the second operand.

3.4. New Hopf structures on painted trees. In [12] we show how new coalgebras are
formed by composing pairs of old ones. Then we prove new Hopf algebra structures, based on
operad compositions and operad actions, for the diamond of nine tree types found by excluding
the upper left diagonal in Figure 10. Here for example is the new product, demonstrated on
composition trees (using corollas rather than combed trees) which are at the bottom of the
diamond.

F
13

F
2

=

= + + +

   F
113

+ F
113

+ F
122

+ F
131

The coproduct is the usual splitting of trees:
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Next we plan to attack the problems of finding formulas for the primitives and antipodes of
some of these algebras. The bijections that prove the two conjectures (by showing combinatorial
equivalence to the stellahedra and pterahedra) also allow us to describe the products and
coproducts using graph tubings. These descriptions are a good deal simpler than the original
descriptions using trees, so there is reason to believe that they will facilitate the finding of
formulas for the antipodes and for primitive elements.

The connection between the algebra and order theory is also interesting: the 1-skeleton of
our polytopes conjecturally always realizes relations of a lattice, often it is indeed the Hasse
diagram of a famous lattice–the Tamari lattice, the Bruhat lattice and the Cambrian lattices of
Reading all being examples seen in the well-known families of polytopes. Chains, intervals and
antichains in these lattices are important. Specifically the Mobius tranformation with respect to
this lattice yields easy proofs of formulas for primitive elements in the associated Hopf algebras:
[3],[2]. With that in mind we plan to spend some time studying the partial orders that naturally

occur on the vertex sets of our new polytopes, starting with the graphs.
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3.5. New orders on tubings. The question might be asked: how easily may the weak order
on permutations and the Tamari order be generalized to n-tubings on a graph with nodes
numbered 1, ..., n? In order to describe the ordering we give the covering relations. We can use
the same notation as when comparing tubings in the poset of faces of the graph associahedron
since in that poset the n-tubings are not comparable.

Definition 3.1. Two n-tubings T, T ′ are in a covering relation T ′ ≺ T if they have all the
same tubes except for one differing pair. We actually compare the outermost nodes, one from
each of the pair of differing tubes. The outermost node of a tube is the node that is included
in no other smaller sub-tube of the tubing. If the number of that node is greater for T , then T

covers T ′.

Note that each such covering relation corresponds to a unique (n−1)-tubing: the one resulting
from removing the differing tubes. Thus the covering relations correspond to the edges of the
graph associahedron.

For example, in Figure 16 we show a covering relation between two tubings on the complete
graph on four numbered nodes. This figure also demonstrates the bijection between n-tubings
and permutations of [n]. The nodes are the inputs for the permutation, and the output is the
relative tube size. E.g., in the left-hand permutation the image of 2 is 1, and so we put the
smallest tube around 2. To see the relation via tubes, we write down the sets of nodes in each
tube. Only one pair of tubes differs. We compare the two numbered nodes of these which are
in no smaller tubes. Here (3124) ≺ (4123) since 1 < 4.

(3 1 2 4) (4 1 2 3)

3

1

2

4 1

2 3

4

{ 2 }        { 2 }

{ 3 2 }        { 3 2 }

{ 3 2 1 }   <     { 4 3 2 }

Figure 16. A covering relation in the weak order on permutations.

It turns out that the relation generated by these covering relations of tubings has been
independently demonstrated to be a poset by Ronco [26]. In her article, the poset we have
described on n-tubings of a graph is seen as the restriction of a larger poset on all the tubings
of a graph.

Figure 17 shows the lattice that results from the cycle graph, rocovering the cyclohedron
in dimension 3. The Hasse diagram is combinatorially equivalent to the 1-skeleton of the
cyclohedron. Notice that this is quite different from the type B3 Cambrian lattice described by
Reading in this volume [25], despite the fact that the latter also is combinatorially equivalent
to the 1-skeleton of the cyclohedron. Figure 18 shows the corresponding lattice on 4-tubings of
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the star graph on 4 nodes. This Hasse diagram is combinatorially equivalent to the 1-skeleton
of the 3d stellohedron. Figure 19 shows both the cyclohedron and stellohedron lattices again,
unlabeled, with a different view of each polytope for comparison.

1

2 3

4

Figure 17. This Hasse diagram is labeled by tubings of the cycle graph, with
nodes numbered 1–4. The covering relations are also a picture of the edges of
the cyclohedron.

We note that as seen in Ronco’s article [26], the Tamari lattice is found as the lattice of n-
tubings on the path graph with nodes numbered 1, . . . , n in the order that they are connected
by edges. Several open questions present themselves: for one, we notice that the 3-dimensional
graph associahedra pictured here have associated posets which upon inspection prove to be
lattices–it is not clear that they always are.

3.6. Graph associahedra and cellular projections. In [6] and [9] Carr and Devadoss show
that for every graph G there is a unique convex polytope KG whose facets correspond to
connected induced subgraphs. The P.I. first suspected the existence of new algebras based on
KG after his discovery (published in [13]) that the Tonks projection from the permutohedron to
the associahedron can be factored through a series of graph-associahedra. This fact is simple to
demonstrate; it follows from Devadoss’s discovery that the complete graph-associahedron is the
permutohedron while the path graph-associahedron is the Stasheff polytope. Thus by deleting
edges of the complete graph one at a time, we describe a family of quotient cellular projections.
Figure 20 shows one of these.

Our important result is that the cellular projections give rise to graded algebra maps.
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1

2
3

4

Figure 18. This Hasse diagram is labeled by tubings of the star graph, with
nodes numbered 1–4. The covering relations are also a picture of the edges of
the stellohedron.

3.7. New algebras and modules: cyclohedron and simplex. In our recent paper [13]
we demonstrate associative graded algebra structures on the vertices of the cyclohedra and
simplices, denoted WSym and ∆Sym. We also extend this structure to the full poset of faces.
Figure 21 shows the product of a pair of vertices in the cyclohedron.

The number of faces of the n-simplex, including the null face and the n-dimensional face,
is 2n. By adjoining the null face here we thus have a graded algebra with nth component of
dimension 2n. A fascinating convergence now appears.

Theorem 3.2. The Hopf algebra of simplex faces ˜∆Sym is isomorphic to the algebraic opposite
of the algebra of compositions with the painted tree product.

The proof of this theorem is in [12]. Here is an example; compare this with the example in
section 3.4 by using the bijection between subsets {a, b, . . . c} ⊂ [n] and compositions (a, b −
a, . . . , n+ 1− c) of n+ 1.

= + + +

F0 F{1} =

   F{1,2} + F{1,2} + F{1,3}
+ F{1,4}=
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Figure 19. On the left is the Hasse diagram for n-tubings of the cycle graph,
with the cyclohedron pictured below for comparison. On the right is the Hasse
diagram for n-tubings of the star graph, with the stellohedron pictured below.
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Θ Θ Θ

Figure 20. A factorization of the Tonks projection through 3 dimensional
graph associahedra. The shaded facets correspond to the shown tubings, and
are collapsed as indicated to respective edges. The pictured polytopes are
P4,Pt4,W4 and K4 from left to right.

3.8. Diameters, flips and the Hirsch conjecture. Is there a polynomial upper bound for
the maximum distance between vertices (via a path of edges) for all n-dimensional polytopes
with k-facets?

The answer to this question is currently unknown. For more than fifty years the question
was conjectured to have the answer that the maximum distance, or graph diameter, was simply
k − n. This is true for the tetrahedron since 4-3 =1, and all the vertices are only one edge
apart. However, in 2010, Francisco Santos found a 43 dimensional polytope with 86 facets,
but with two vertices a little further than 43 steps apart. By “found” we mean “showed to
exist;” the exact distance is hard to compute when there are likely billions of vertices. This
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Figure 21. As seen in [13], the product of two faces from terms Wi and Wj of
the cyclohedra, is described as a sum of faces of the term Wi+j . The summed
faces in the product are the images of maps which embed cartesian products of
earlier terms of {Wn}, composed with our new extensions of the Tonks projec-
tion.

counterexample only increases the interest in answering the question of whether there is a more
complicated polynomial in k and n that limits the distance between vertices. That the answer
is “yes” is known as the polynomial Hirsch conjecture. The Hirsch conjecture and any lower
bounds on it are of value to those using linear programming to find optimal design solutions.
This is because the diameter of a polytope provides an upper limit for the number of steps in
the simplex algorithm–which maximizes a linear functional over that polytope.

Very promising is the fact that our new construction unifies a great deal of existing examples
in which the edges of the polytope have combinatorial “flip graph” descriptions. Each edge
of a poset associahedron can be interpreted as a flip, where one tube of a tubing is removed
and another uniquely determined tube takes its place. (See Figure 22 for an example.) This
both unites and generalizes the meaning of edges in associahedra, permutohedra, and graph
associahedra. In terms of diameters of these polytopes, it allows a path in the 1-skeleton to be
interpreted as a series of flips connecting two combinatorial objects.

Figure 22. Each edge of a poset associahedron can be interpreted as a flip,
where one tube is removed and another uniquely determined tube takes its place.
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Studying the flip distance between triangulations of a polygon or between binary trees has
led to recent success in finding the diameters of associahedra, from Pournin [24]. This success
has ignited much interest, including our own, in extending these results to related polytope
sequences. Interestingly, the results of Pournin conform to the polynomial Hirsch conjecture
for the diameters of polytopes. We hope that by finding new formulas for the diameters of
infinite sequences of polytopes we can establish lower bounds (conjecturally polynomial in the
dimension and number of vertices) on the polynomial Hirsch conjecture.

3.9. Convex combinatorics and phylogenetic trees. Just as finding the etymology of an
unfamiliar word can help us discern its meaning, knowledge of the historical development of a
gene can be a key to determining its function.

Being able to isolate genes and collections of genes that are related to disorders in an organism
is of inestimable value for medicine. Despite our ability to sequence the genome, we are far
from knowing even a tiny percentage of what traits are coded for in most of it. Every new
method of finding the specific functions a gene corresponds to brings the potential of a new
genetic therapy, or a new screening that can catch problems before they are serious.

3.10. Statistics and combinatorics. The goal is to start with a set of genomes, the common
DNA of a theoretically related set of species (or a set of DNA samples from individuals) and
to produce a history. This has been done in several ways, most recently by Pachter and his
coauthors. They demonstrate that the so-called neighbor-net algorithm produces from a DNA
data a tubing on a path graph. [20, 16, 15]

Recently S. Devadoss and students have developed methods of taking DNA data from a set of
species and creating a tubing on a general graph. We plan to collaborate on the application of
this method, since the P.I. has found ways to relate a graph tubing to a phylogenetic network.

The final result will be a branching network, with a basic tree-like structure that also has
potentially several roots and limbs that may rejoin at a higher, later level. The latter will
represent the occurrence of lateral gene transfer, or hybridization.

3.11. How to start with a face of a graph associahedron and get a phylogenetic tree.
The nodes of a graph are labeled by a collection of species, combinatorially described by their
genomes. Edges in the graph represent contribution of DNA, either by descent (mutation) or
by hybridization. Tubes in the graph show time progression: a node outside a tube is a direct
ancestor of nodes it is adjacent to inside that tube. Thus in complete tubings there is no am-
biguity in time progression, but ambiguities may be represented in incomplete tubings.

The following figures show how to interpret a graph tubing as a phylogenetic tree. Figure 23
is a complete tubing–it has 7 nodes and 6 tubes. Figure 24 is incomplete–two tubes have been
removed. Thus a single higher face contains inside it the potential of all its finer subfaces.
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Figure 23. Horizontal lines on the right represent genomes, and time progresses
to the right.
g is a hybrid of x and a
b is a hybrid of x and a
c is a mutation of b
d is a hybrid of x, b and e
a is a mutation of e.
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Figure 24. In this example some tubes have been removed, allowing ambiguity
in time progression. Now we have, for example:
Either g is a hybrid of x and a, or a is a hybrid of e and g .
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[17] Jean-Louis Loday and Maŕıa O. Ronco. Combinatorial hopf algebras. arxiv preprint.
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