Shapes and Lattices

Stefan Forcey

March 11, 2011

What is a lattice?

- A set,
- with a partial ordering $<$,
- such that every pair of elements has a least upper bound and a greatest lower bound.

Figure: One of these is not a lattice. How about "Snakes and ladders?"

What is a polytope?

- A set of vertices in \mathbb{R}^{n},
- and their convex hull.

What is a polytope?

- A set of vertices in \mathbb{R}^{n},
- and their convex hull.
- The 1 -skeleton of a polytope $=$ vertices and edges.

Two permutations in \mathfrak{S}_{4}.

Graphing permutations.

Treating the permutations as vertices and taking their convex hull yields a polytope. For example (3124) becomes ($3,1,2,4$), and all the points from \mathfrak{S}_{4} make this:

This polytope is called the permutohedron, \mathcal{P}_{n}. Why is \mathcal{P}_{4} 3-dimensional?

Picturing permutations.

Two examples:
(3 124)

(4 12 3)

The nodes are the inputs for the permutation, and the output is the relative circle size. In the first example the image of 2 is 1 , and so we put the smallest circle around 2.

Ordering permutations.

Write down the sets of nodes in the circles: the tubes. Only one pair of tubes will differ. Compare the two numbered nodes of these which are in no smaller tubes. Here $1<4$.
(3124)

\{2\}
\{32\}
\{321\}
(4123)

\{2 \}
\{32 \}
\{432\}

The 1 -skeleton of \mathcal{P}_{n} as a lattice.

Idea.

1. Generalize permutations by deleting graph edges from the complete graph.
2. If a circle no longer surrounds a connected subgraph, split it into two.
3. Note: sometimes several permutations will be mapped to the same graph tubing.

Question 1.

Is the result of deleting the same edges in all the pictures of \mathfrak{S}_{n} still a polytope?
Yes! These are the graph associahedra, discovered by M. Carr and S. Devadoss. The edge deletions correspond to cellular projections.

Question.

Is the 1-skeleton of each of these still a lattice?

Answer.

At least sometimes. For example, the cycle graphs: their polytopes are called the cyclohedra \mathcal{W}_{n}. Here is the lattice:

Question.

Does the projection function from \mathcal{P}_{n} to our new lattice form a lattice congruence?
Definition: A lattice congruence is a projection of lattices that preserves least upper bounds and greatest lower bounds.
Conjecture: Yes.

Applications: cyclohedron.

1. R. Bott and C. Taubes used the space $\mathcal{W}_{n} \times S^{1}$ to define new invariants which reflect the self linking of knots.
2. S. Devadoss discovered a tiling of the $(n-1)$-torus by $(n-1)$! copies of \mathcal{W}_{n}.
3. Recently J. Morton and collaborators used \mathcal{W}_{n} to look for the statistical signature of periodically expressed genes in the study of biological clocks.

Thanks! For bibliography please see
http://faculty.tnstate.edu/sforcey/cyclo_alg.pdf.

