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Abstract
The structure of a k-fold monoidal category as introduced by Balteanu,

Fiedorowicz, Schwänzl and Vogt in [2] can be seen as a weaker structure than
a symmetric or even braided monoidal category. In this paper we show that
it is still sufficient to permit a good definition of (n-fold) operads in a k-fold
monoidal category which generalizes the definition of operads in a braided
category. Furthermore, the inheritance of structure by the category of operads
is actually an inheritance of iterated monoidal structure, decremented by at
least two iterations. We prove that the category of n-fold operads in a k-fold
monoidal category is itself a (k−n)-fold monoidal, strict 2-category, and show
that n-fold operads are automatically (n− 1)-fold operads. We also introduce
a family of simple examples of k-fold monoidal categories and classify operads
in the example categories.
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1. Introduction

In this introductory section we will give a brief, non-chronological overview of the relationship between
operads, higher category theory, and topology. This will serve to motivate the study of iterated monoidal
categories and their operads that comprises the remaining sections. In the second section, in order to
be self contained, we repeat the definition of the iterated monoidal categories first set down in [2]. In
the fourth section we seek to fill a gap in the literature which currently contains few good examples of
that definition. Thus our first new contribution consists of a series of simple and very geometric iterated
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monoidal categories based on totally ordered monoids. By simple we mean that axioms are largely
fulfilled due to relationships between max, plus, concatenation, sorting and lexicographic ordering as
well as the fact that all diagrams commute since the underlying directed graph of the category is merely
the total order. The most interesting examples of n-fold monoidal categories are those whose objects can
be represented by Ferrer or Young diagrams (the underlying shapes of Young tableaux.) These exhibit
products with the geometrical interpretation “combining stacks of boxes.” Managers of warehouses or
quarries perhaps may already be well acquainted with the three dimensional version of the main example
of iterated monoidal categories we introduce here. Imagine that floor space in the quarry or warehouse is
at a premium and that therefore you are charged with combining several stacks of crates or stone blocks
by restacking some together vertically and shifting others together horizontally. It turns out that the
best result in terms of gained floor space is always to be achieved most efficiently by doing the restacking
and shifting in a very particular order–horizontally first, then vertically.

The main new contribution is the theory of operads within, or enriched in, iterated monoidal cat-
egories. This theory is based upon the fact that the natural setting of operads turns out to be in a
category with lax interchange between multiple operations, as opposed to the full strength of a braiding
or symmetry as is classically assumed. Batanin’s definition of n-operad also relies on this insight [4]. In
that paper he notes that an iterated monoidal category V would be an example of a globular monoidal
category with a single object, and a single arrow in each dimension up to n, in which last dimension
the arrows would actually be the objects of V. Of course the invertibility of the interchange would also
have to be dropped from his definition. In that case the n-fold operads defined here would correspond
to Batanin’s n-operads. The advantages of seeing them in a single categorical dimension are in the way
that doing so generalizes the fact that operads in a symmetric monoidal category inherit its symmetric
structure. We investigate the somewhat flexible structure of the iterated monoidal 2-category that n-fold
operads comprise. Flexibility arises from the difference between n and k, where one is investigating n-fold
operads in a k-fold monoidal category V, where n < k − 1. It turns out that choosing n much smaller
than k allows multiple interchanging products to be defined on the category of operads, whereas choos-
ing n closer to k allows the operads to take on multiple operad structures at once with respect to the
products in V. Examples of combinatorial operads living in the previously introduced combinatorially
defined categories are utilized to demonstrate the sharpness of several of the resulting theorems, i.e. to
provide counterexamples. The examples start to take on a life of their own, however, as theorems and
open questions about the classification of operads in combinatorial n-fold monoidal categories arise. The
definition of operad in the categories with morphisms given by ordering leads to descriptions of inter-
esting kinds of growth. We give a complete description of the simple example of 2-fold operads in the
natural numbers. We then give the elementary results for operads in the category of Young diagrams. In
the basic examples linear and logarithmic growth characterize respective dimensions in a single sequence
of Young diagrams. These phenomena hint towards a theory of operadic growth. Full investigation and
further classification must await a sequel to this paper. Applications might be found in scientific fields
such as the theory of small world networks, where the diameter of a network is the logarithm of the
number of nodes.

First, however, we look at some of the history and philosophy of the two major players here, operads
and iterated monoidal categories. Operads in a category of topological spaces are the crystallization
of several approaches to the recognition problem for iterated loop spaces. Beginning with Stasheff’s
associahedra and Boardman and Vogt’s little n-cubes, and continuing with more general A∞, En and
E∞ operads described by May and others, that problem has largely been solved [26], [8], [21]. Loop
spaces are characterized by admitting an operad action of the appropriate kind. More lately Batanin’s
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approach to higher categories through internal and higher operads promises to shed further light on the
combinatorics of En spaces [5], [6].

Recently there has also been growing interest in the application of higher dimensional structured
categories to the characterization of loop spaces. The program being advanced by many categorical
homotopy theorists seeks to model the coherence laws governing homotopy types with the coherence
axioms of structured n-categories. By modeling we mean a connection that will be in the form of a
functorial equivalence between categories of special categories and categories of special spaces. The
largest challenges currently are to find the most natural and efficient definition of (weak) n-category,
and to determine the nature of the functor from categories to spaces. The latter will almost certainly
be analogous to the nerve functor on 1-categories, which preserves homotopy equivalence. In [27] Street
defines the nerve of a strict n-category. Recently Duskin in [9] has worked out the description of the
nerve of a bicategory. A second part of the latter paper promises the full description of the functor
including how it takes morphisms of bicategories to continuous maps.

One major recent advance is the discovery of Balteanu, Fiedorowicz, Schwänzl and Vogt in [2] that the
nerve functor on categories gives a direct connection between iterated monoidal categories and iterated
loop spaces. Stasheff [26] and Mac Lane [19] showed that monoidal categories are precisely analogous
to 1-fold loop spaces. There is a similar connection between symmetric monoidal categories and infinite
loop spaces. The first step in filling in the gap between 1 and infinity was made in [10] where it is shown
that the group completion of the nerve of a braided monoidal category is a 2-fold loop space. In [2] the
authors finish this process by, in their words, “pursuing an analogy to the tautology that an n-fold loop
space is a loop space in the category of (n−1)-fold loop spaces.” The first thing they focus on is the fact
that a braided category is a special case of a carefully defined 2-fold monoidal category. Based on their
observation of the correspondence between loop spaces and monoidal categories, they iteratively define
the notion of n-fold monoidal category as a monoid in the category of (n− 1)-fold monoidal categories.
In [2] a symmetric category is seen as a category that is n-fold monoidal for all n. The main result in
that paper is that the group completion of the nerve of an n-fold monoidal category is an n-fold loop
space. It is still open whether this is a complete characterization, that is, whether every n-fold loop space
arises as the nerve of an n-fold monoidal category. Much progress towards the answer to this question
was made by the original authors in their sequel paper, but the desired result was later shown to remain
unproven. One of the future goals of the program begun here is to use weakenings or deformations of the
examples of n-fold monoidal categories introduced here to model specific loop spaces in a direct way.

The connection between the n-fold monoidal categories of Fiedorowicz and the theory of higher
categories is through the periodic table as laid out in [1]. Here Baez organizes the k-tuply monoidal
n-categories, by which terminology he refers to (n + k)-categories that are trivial below dimension
k. The triviality of lower cells allows the higher ones to compose freely, and thus these special cases
of (n + k)-categories are viewed as n-categories with k multiplications. Of course a k-tuply monoidal
n-category is a special k-fold monoidal n-category. The specialization results from the definition(s) of n-
category, all of which seem to include the axiom that the interchange transformation between two ways of
composing four higher morphisms along two different lower dimensions is required to be an isomorphism.
As will be mentioned in the next section the property of having iterated loop space nerves held by the
k-fold monoidal categories relies on interchange transformations that are not isomorphisms. If those
transformations are indeed isomorphisms then the k-fold monoidal 1-categories do reduce to the braided
and symmetric 1-categories of the periodic table. Whether this continues for higher dimensions, yielding
for example the sylleptic monoidal 2-categories of the periodic table as 3-fold monoidal 2-categories with
interchange isomorphisms, is yet to be determined.
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A further refinement of higher categories is to require all morphisms to have inverses. These special
cases are referred to as n-groupoids, and since their nerves are simpler to describe it has long been
suggested that they model homotopy n-types through a construction of a fundamental n-groupoid. This
has in fact been shown to hold in Tamsamani’s definition of weak n-category [28], and in a recent paper
by Cisinski to hold in the definition of Batanin as found in [4]. A homotopy n-type is a topological space
X for which πk(X) is trivial for all k > n. It has been suggested that a key requirement for any useful
definition of n-category is that a k-tuply monoidal n-groupoid be associated functorially (by a nerve)
to a topological space which is a homotopy n-type and a k-fold loop space [1]. The loop degree will
be precise for k < n + 1, but for k > n the associated homotopy n-type will be an infinite loop space.
This last statement is a consequence of the stabilization hypothesis , which states that there should be
a left adjoint to forgetting monoidal structure that is an equivalence of (n + k + 2)-categories between
k-tuply monoidal n-categories and (k + 1)-tuply monoidal n-categories for k > n + 1. This hypothesis
has been shown by Simpson to hold in the case of Tamsamani’s definition [24]. For the case of n = 1
if the interchange transformations are isomorphic then a k-fold monoidal 1-category is equivalent to a
symmetric category for k > 2. With these facts in mind it is possible that if we wish to precisely model
homotopy n-type k-fold loop spaces for k > n then we may need to consider k-fold as well as k-tuply
monoidal n-categories. This paper is part of an embryonic effort in that direction.

Since a loop space can be efficiently described as an operad algebra, it is not surprising that there are
several existing definitions of n-category that utilize operad actions. These definitions fall into two main
classes: those that define an n-category as an algebra of a higher order operad, and those that achieve an
inductive definition using classical operads in symmetric monoidal categories to parameterize iterated
enrichment. The first class of definitions is typified by Batanin and Leinster [4],[17].

The former author defines monoidal globular categories in which interchange transformations are
isomorphisms and which thus resemble free strict n-categories. Globular operads live in these, and take
all sorts of pasting diagrams as input types, as opposed to just a string of objects as in the case of
classical operads. The binary composition in an n-category derives from the action of a certain one of
these globular operads. Leinster expands this concept to describe n-categories with unbiased composition
of any number of cells. The second class of definitions is typified by the works of Trimble and May [29],
[22].

The former parameterizes iterated enrichment with a series of operads in (n − 1)-Cat achieved by
taking the fundamental (n − 1)-groupoid of the kth component of the topological path composition
operad E. The latter begins with an A∞ operad in a symmetric monoidal category V and requires his
enriched categories to be tensored over V so that the iterated enrichment always refers to the same
original operad.

Iterated enrichment over n-fold categories is described in [11] and [12]. It seems worthwhile to define n-
fold operads in n-fold monoidal categories in a way that is consistent with the spirit of Batanin’s globular
operads. Their potential value may include using them to weaken enrichment over n-fold monoidal
categories in a way that is in the spirit of May and Trimble. This program carries with it the promise
of characterizing k-fold loop spaces with homotopy n-type for all n, k by describing the categories with
exactly those spaces as nerves. As a candidate for the type of category with such a nerve we suggest a
weak n-category with k multiplications that interchange only in the lax sense. In this paper “lax” will
indicate that the morphisms involved in a definition are not necessarily isomorphisms. Lax interchangers
will obey coherence axioms, as seen in the next section.

In this paper we follow May by defining n-fold operads in terms of monoids in a certain category
of collections. A more abstract approach for future consideration would begin by finding an equivalent
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definition in the language of Weber, where an operad lives within a monoidal pseudo algebra of a 2-monad
[30]. This latter is a general notion of operad which includes as instances both the classical operads and
the higher operads of Batanin.

2. k-fold monoidal categories

This sort of category was developed and defined in [2]. The authors describe its structure as arising
recursively from its description as a monoid V,⊗k, λ in the category of (k − 1)-fold monoidal categories
and lax monoidal functors, with the cartesian product. Actually, the multiplication ⊗k is a lax monoidal
functor, but the unit λ is a strict monoidal functor. Here we present that definition (in an expanded form)
altered only slightly to make visible the coherent associators as in [11]. That latter paper describes its
structure in terms of tensor objects in the category of (k−1)-fold monoidal categories. Our variation has
the effect of making visible the associators αi

ABC . It is desirable to do so for several reasons. One is that
the associators are included in definitions of other related objects such as enriched categories. Another
reason is that this inclusion makes easier a direct comparison with Batanin’s definition of monoidal
globular categories as in [4]. A monoidal globular category can be seen as a quite special case of an
iterated monoidal category, with source and target maps that take objects to those in a category with
one less product, and with interchanges that are isomorphisms.

A third reason is that in this paper we will consider a category of collections in an iterated monoidal
category which will be (iterated) monoidal only up to natural associators. That being said, in much
of the remainder of this paper we will consider examples with strict associativity, where each α is the
identity, and in interest of clarity will often hide associators. Another expansion beyond [11] in the
following definition is that the products are allowed to have distinct units.

2.1 Definition. A (strong) n-fold monoidal category with distinct units is a category V with the following
structure.

1. There are n multiplications
⊗1,⊗2, . . . ,⊗n : V × V → V

each equipped with an associator αUV W , a natural isomorphism which satisfies the pentagon equa-
tion:

((U ⊗i V )⊗i W )⊗i X
αi

UV W⊗i1X//

αi
(U⊗iV )W X

||zzzzzzzzzzzzzz
(U ⊗i (V ⊗i W ))⊗i X

αi
U(V⊗iW )X

""DDDDDDDDDDDDDD

(U ⊗i V )⊗i (W ⊗i X)

αi
UV (W⊗iX)

((RRRRRRRRRRRRRRRRRRRRRRRR
U ⊗i ((V ⊗i W )⊗i X)

1U⊗iα
i
V W X

vvllllllllllllllllllllllll

U ⊗i (V ⊗i (W ⊗i X))

(2) V has objects Ii, i = 1 . . . n, which are strict units for multiplications: A⊗i Ii = A = Ii⊗i A. Since
⊗j is a (lax) monoidal functor (with strict units) with respect to ⊗i for 1 6 i < j 6 n these units
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obey Ii⊗j Ii = Ii. Since the unit map (from the single object category to V seen as a monoid with
multiplication ⊗j) is itself a strict monoidal functor these units also obey Ij ⊗i Ij = Ij .

(3) For each pair (i, j) such that 1 6 i < j 6 n there is an interchanger natural transformation

ηij
ABCD : (A⊗j B)⊗i (C ⊗j D) → (A⊗i C)⊗j (B ⊗i D).

These natural transformations ηij are subject to the following conditions:

(a) Internal unit condition: ηij
ABIiIi = ηij

IiIiAB = 1A⊗jB

(b) External unit condition: ηij
AIjBIj = ηij

IjAIjB = 1A⊗iB

(c) Internal associativity condition: The following diagram commutes.

((U ⊗j V )⊗i (W ⊗j X))⊗i (Y ⊗j Z)
ηij

UV W X⊗i1Y⊗jZ
//

αi

��

(
(U ⊗i W )⊗j (V ⊗i X)

)
⊗i (Y ⊗j Z)

ηij
(U⊗iW )(V⊗iX)Y Z

��
(U ⊗j V )⊗i ((W ⊗j X)⊗i (Y ⊗j Z))

1U⊗jV ⊗iη
ij
W XY Z

��

((U ⊗i W )⊗i Y )⊗j ((V ⊗i X)⊗i Z)

αi⊗jαi

��
(U ⊗j V )⊗i

(
(W ⊗i Y )⊗j (X ⊗i Z)

) ηij
UV (W⊗iY )(X⊗iZ) // (U ⊗i (W ⊗i Y ))⊗j (V ⊗i (X ⊗i Z))

(d) External associativity condition: The following diagram commutes.

((U ⊗j V )⊗j W )⊗i ((X ⊗j Y )⊗j Z)
ηij
(U⊗jV )W (X⊗jY )Z

//

αj⊗iα
j

��

(
(U ⊗j V )⊗i (X ⊗j Y )

)
⊗j (W ⊗i Z)

ηij
UV XY ⊗j1W⊗iZ

��
(U ⊗j (V ⊗j W ))⊗i (X ⊗j (Y ⊗j Z))

ηij
U(V⊗jW )X(Y⊗jZ)

��

((U ⊗i X)⊗j (V ⊗i Y ))⊗j (W ⊗i Z)

αj

��
(U ⊗i X)⊗j

(
(V ⊗j W )⊗i (Y ⊗j Z)

) 1U⊗iX⊗jηij
V W Y Z // (U ⊗i X)⊗j ((V ⊗i Y )⊗j (W ⊗i Z))

(e) Finally it is required for each triple (i, j, k) satisfying 1 6 i < j < k 6 n that the giant
hexagonal interchange diagram commutes.
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((A⊗k A′)⊗j (B ⊗k B′))⊗i ((C ⊗k C ′)⊗j (D ⊗k D′))

ηjk

AA′BB′⊗iη
jk

CC′DD′

qqqqqqqqqq

xxqqqqqqqqqq
ηij

(A⊗kA′)(B⊗kB′)(C⊗kC′)(D⊗kD′)

MMMMMMMMM

&&MMMMMMMMM

((A⊗j B)⊗k (A′ ⊗j B′))⊗i ((C ⊗j D)⊗k (C ′ ⊗j D′))

ηik
(A⊗jB)(A′⊗jB′)(C⊗jD)(C′⊗jD′)

��

((A⊗k A′)⊗i (C ⊗k C ′))⊗j ((B ⊗k B′)⊗i (D ⊗k D′))

ηik
AA′CC′⊗jηik

BB′DD′

��
((A⊗j B)⊗i (C ⊗j D))⊗k ((A′ ⊗j B′)⊗i (C ′ ⊗j D′))

ηij
ABCD⊗kηij

A′B′C′D′

MMMMMMMMMM

&&MMMMMMMMMM

((A⊗i C)⊗k (A′ ⊗i C ′))⊗j ((B ⊗i D)⊗k (B′ ⊗i D′))

ηjk

(A⊗iC)(A′⊗iC′)(B⊗iD)(B′⊗iD′)

qqqqqqqqq

xxqqqqqqqqq

((A⊗i C)⊗j (B ⊗i D))⊗k ((A′ ⊗i C ′)⊗j (B′ ⊗i D′))

As noted in the introduction, the terminology for the case in which the interchangers are isomorphisms
is k-tuply monoidal. If the associators αi are identities then we call the category strict n-fold monoidal;
if the units Ii are identical then we say the category has a common unit I; and to follow [2] if there is
are no quantifiers then we refer to the strict category with a common unit. If the associators are merely
natural transformations then we call the category lax n-fold monoidal (with strict units). The units will
always be strict unless specified, and so the parenthetical specification will be omitted.

Note that in the case of a common unit I, for q > p we have natural transformations

ηpq
AIIB : A⊗p B → A⊗q B and ηpq

IABI : A⊗p B → B ⊗q A.

Joyal and Street [14] considered a similar concept to Balteanu, Fiedorowicz, Schwänzl and Vogt’s
idea of 2–fold monoidal category. The former pair required the natural transformation ηABCD to be
an isomorphism and showed that the resulting category is naturally equivalent to a braided monoidal
category. As explained in [2], given such a category one obtains an equivalent braided monoidal category
by discarding one of the two operations, say ⊗2, and defining the commutativity isomorphism for the
remaining operation ⊗1 to be the composite

A⊗1 B
ηIABI // B ⊗2 A

η−1
BIIA // B ⊗1 A.

The authors of [2] remark that a symmetric monoidal category is n-fold monoidal for all n. This they
demonstrate by letting

⊗1 = ⊗2 = · · · = ⊗n = ⊗

and defining

ηij
ABCD = α−1 ◦ (1A ⊗ α) ◦ (1A ⊗ (cBC ⊗ 1D)) ◦ (1A ⊗ α−1) ◦ α

for all i < j. Here cBC : B ⊗ C → C ⊗B is the symmetry natural transformation.
Joyal and Street [14] require that the interchange natural transformations ηij

ABCD be isomorphisms
and observed that for n > 3 the resulting sort of category is equivalent to a symmetric monoidal category.
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Thus as Balteanu, Fiedorowicz, Schwänzl and Vogt point out, the nerves of such categories have group
completions which are infinite loop spaces rather than only n–fold loop spaces.

Because of the nature of the definition of iterated monoidal category, there are multiple forgetful
functors implied. Specifically, letting n < k, from the category of k-fold monoidal categories to the
category of n-fold monoidal categories there are

(
k
n

)
forgetful functors which forget all but the chosen

set of products.
The coherence theorem for strict iterated monoidal categories with a common unit states that any

diagram composed solely of interchange transformations commutes; i.e. if two compositions of various
interchange transformations (legs of a diagram) have the same source and target then they describe
the same morphism. Furthermore we can easily determine when a composition of interchanges exists
between objects. Here are the necessary definitions and Theorem as given in [2].

2.2 Definition. [2] Let Fn(S) be the free strict n-fold monoidal category on the finite set S. Its
objects are all finite expressions generated by the elements of S using the products ⊗k, k = 1..n. Its
common unit is the empty expression. Its morphisms are finite composites of finite expressions generated
by the symbols ηij

ABCD with 1 6 i < j 6 n, and A,B, C, D objects of Fn(S), using the associative
operations ⊗k, k = 1..n. Two morphisms are identified if they can be converted into one another by use
of functoriality, naturality and associativity axioms. By Mn(S) we denote the full sub-category of Fn(S)
whose objects are expressions in which each element of S occurs exactly once.

If S ⊂ T then there is a restriction functorMn(T ) →Mn(S), induced by the functor Fn(T ) → Fn(S),
which sends T − S to the empty expression 0.

2.3 Definition. Let A be an object of Mn(S). For a, b ∈ S we say that a ⊗i b in A if the restriction
functor Mn(S) →Mn(a, b) sends A to a⊗i b.

2.4 Theorem. [2] Let A and B be objects of Mn(S). Then

1. There is at most one morphism A → B.

2. Moreover, there exists a morphism A → B if and only if, for every a, b ∈ S, a ⊗i b in A implies
that either a⊗j b is in B for some j > i or b⊗j a is in B for some j > i.

Now the coherence theorem can be used to check for commutativity of diagrams in an n-fold monoidal
V. If two legs of a diagram involving k possibly indistinct operands at its vertices are formed solely of
instances of the interchangers, then they are equal by considering a morphism from Mn({1, . . . , k}) to
V. Note that if V is lax or strong (associators not identities) then the coherence theorem has not yet
been shown to hold. Also note that if V has distinct units then the “if” portion of the second part of
the coherence theorem does not imply anything about V. However in this case the coherence theorem
can still be used to show commutativity in V by considering a morphism from the full subcategory of
Mn({1, . . . , k}) formed by discarding the empty expression.

3. n-fold operads

The two principle components of an operad are a collection, historically a sequence, of objects in a
monoidal category and a family of composition maps. Operads are often described as parameterizations
of n-ary operations. Peter May’s original definition of operad in a symmetric (or braided) monoidal
category [21] has a composition γ that takes the tensor product of the nth object (n-ary operation) and
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n others (of various arity) to a resultant that sums the arities of those others. The nth object or n-ary
operation is often pictured as a tree with n leaves, and the composition appears like this:

QQQQQQ
??

??
��

��
oooooo

??
??

��
�� ??

??
��

��

γ //

YYYYYYYYYYYYY
??

??
��

��
jjjjjjjj

VVVVVVVVVVVVVV

SSSSSSSSSSS

OOOOOOOOO

GGGGGG

44
44

4










wwwwww

ooooooooo

kkkkkkkkkkk

iiiiiiiiiiiii

By requiring this composition to be associative we mean that it obeys this sort of pictured commuting
diagram:

??
??

��
��

??
??

��
�� γ //

OOOOOO
oooooo

γ��

III
I

zzz
z

VVVVVVVV
mmmmmm

γ��

??
??

��
�� ??

??
��

��

γ //

OOOOOO
oooooo QQQQQQ

??
??

��
��

oooooo

In the above pictures the tensor products are shown just by juxtaposition, but now we would like to
think about the products more explicitly. If the monoidal category is not strict, then there is actually
required another leg of the associativity diagram, where the tensoring is reconfigured so that the com-
position can operate in an alternate order. Here is how that rearranging looks in a symmetric (braided)
category, where the shuffling is accomplished by use of the symmetry (braiding):
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⊗
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We now foreshadow our definition of operads in an iterated monoidal category with the same picture
as above but using two tensor products, ⊗1 and ⊗2. It becomes clear that the true nature of the shuffle
is in fact that of an interchange transformation.

44
44

4










( ⊗2( ⊗2
))

⊗1

44
44

4










( ⊗2 ) η12
//

⊗1

GGGGGG

wwwwww

MMMM
ttt

t
⊗2

( ⊗1 )⊗2( ⊗1 )
JJJ

J
ttt

t

⊗1

TTTTTTT
jjjjjjj

To see this just focus on the actual domain and range of η12 which are the upper two levels of trees
in the pictures, with the tensor product (| ⊗2 |) considered as a single object.

Now we are ready to give the technical definitions. We begin with the definition of 2-fold operad in
an n-fold monoidal category, as in the above picture, and then mention how it generalizes the case of
operad in a braided category. Because of this generalization of the well known case, and since there
are easily described examples of 2-fold monoidal categories based on a braided category as in [13], it
seems worthwhile to work out the theory for the 2-fold operads in its entirety before moving on to n-fold
operads.
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3.1 Definition. Let V be a strict n-fold monoidal category as defined in Section 2. A 2-fold operad C
in V consists of objects C(j), j > 0, a unit map J : I → C(1), and composition maps in V

γ12 : C(k)⊗1 (C(j1)⊗2 · · · ⊗2 C(jk)) → C(j)

for k > 1, js > 0 for s = 1 . . . k and
k∑

n=1
jn = j. The composition maps obey the following axioms:

1. Associativity: The following diagram is required to commute for all k > 1, js > 0 and it > 0, and

where
k∑

s=1
js = j and

j∑
t=1

it = i. Let gs =
s∑

u=1
ju and let hs =

gs∑
u=1+gs−1

iu. The η12 labeling the

leftmost arrow actually stands for a variety of equivalent maps which factor into instances of the
12 interchange.

C(k)⊗1

(
k⊗

s=1
2C(js)

)
⊗1

(
j⊗

t=1
2C(it)

)
γ12⊗1id //

id⊗1η12

��

C(j)⊗1

(
j⊗

t=1
2C(it)

)
γ12

��
C(i)

C(k)⊗1

(
k⊗

s=1
2

(
C(js)⊗1

(
js⊗

u=1
2C(iu+gs−1)

)))
id⊗1(⊗k

2γ12)

// C(k)⊗1

(
k⊗

s=1
2C(hs)

)γ12

OO

2. Respect of units is required just as in the symmetric case. The following unit diagrams commute.

C(k)⊗1 (⊗k
2I)

1⊗1(⊗k
2J )

��

C(k)

C(k)⊗1 (⊗k
2C(1))

γ12

88ppppppppppp

I ⊗1 C(k)

J⊗11

��

C(k)

C(1)⊗1 C(k)

γ12
99rrrrrrrrrr

Note that operads in a braided monoidal category are examples of 2-fold operads. This is true based
on the arguments of Joyal and Street [14], who showed that braided categories arise as 2-fold monoidal
categories where the interchanges are isomorphisms. Also note that given such a perspective on a braided
category, the two products are equivalent and the use of the braiding to shuffle in the operad associativity
requirement can be rewritten as the use of the interchange.

It is immediately clear that we can define operads using more than just the first two products in
an n-fold monoidal category. The best way of going about this is to use the theory of monoids, (and
more generally enriched categories), in iterated monoidal categories. We continue by first describing this
procedure for 2-fold operads. Operads in a symmetric (braided) monoidal category are often efficiently
defined as the monoids of a category of collections. For a braided category (V,⊗) with coproducts that
are preserved by both functors (—⊗A) and (A⊗—) the objects of Col(V) are functors from the discrete
category of nonnegative integers to V. In other words the data for a collection C is a sequence of objects
C(j). Morphisms in Col(V) are natural transformations. The tensor product in Col(V) is given by

(B ⊗ C)(j) =
∐
k>0

j1+···+jk=j

B(k)⊗ (C(j1)⊗ · · · ⊗ C(jk))
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where ji > 0. This product is associative by use of the symmetry or braiding, and due to the hypothesis
that the tensor product preserves the coproduct. The unit is the collection (∅, I, ∅, . . . ) where ∅ is an
initial object in V.

Now recall how the interchange transformations generalize braiding. For V a 2-fold monoidal category
with all coproducts in which both ⊗1 and ⊗2 strictly preserve the coproduct, define the objects and
morphisms of Col(V) in precisely the same way as in the braided case, but define the product to be

(B⊗12C)(j) =
∐
k>0

j1+···+jk=j

B(k)⊗1 (C(j1)⊗2 · · · ⊗2 C(jk))

In general the interchangers will not be isomorphisms, so this product can not be that of a monoidal
category with the usual strong associativity. However the interchangers can be used to make the product
in question obey lax associativity, where the associator is a coherent natural transformation: it obeys the
usual pentagon axiom but is not required to be an isomorphism. This lax associativity is seen by inspec-
tion of the two 3-fold products (B⊗12C)⊗12D and B⊗12(C⊗12D). In the braided case mentioned above,
the two large coproducts in question are seen to be composed of the same terms up to a braiding between
them. Here the terms of the two coproducts are related by instances of the interchange transformation
η12 from the term in ((B⊗12C)⊗12D)(j) to the corresponding term in (B⊗12(C⊗12D))(j). For example
upon expansion of the two three-fold products we see that in the coproduct which is ((B⊗12C)⊗12D)(2)
we have the term

B(2)⊗1 (C(1)⊗2 C(1))⊗1 (D(1)⊗2 D(1))

while in (B⊗12(C⊗12D))(2) we have the term

B(2)⊗1 (C(1)⊗1 D(1))⊗2 (C(1)⊗1 D(1)).

Note that the first of these terms appears courtesy of the fact that strict preservation of coproducts by
the tensor product means precisely that there is a distributive law (

∐
Bn)⊗A =

∐
(Bn ⊗A).

Commutativity of the pentagon axiom for the associators is implied by functoriality of the products
and by the coherence theorem for strict n-fold monoidal categories, since the legs of the diagram are
made of distributions over the coproduct (identities) and of compositions of interchangers η12 in V. Some
remarks about the non-invertibility of α are in order. Note that Mac Lane proves his coherence theorem
in two steps [20]. First it is shown that every diagram involving only α (no α−1) commutes. Then it is
noted that this suffices to make every diagram of both α and α−1 commute since for every binary word
there exists a path of just instances of α from that word to the word parenthesized all to the right. (Here
we are taking the domain of α to be (A⊗B)⊗C.) Thus when α is not invertible we still have that every
diagram commutes. There are still canonical maps from every binary word to the word parenthesized all
to the right. However there are necessarily fewer diagrams. For instance if (V,⊗) is lax monoidal there
is no canonical map between the two objects (B⊗B)⊗ (B⊗B) and (B⊗ (B⊗B))⊗B. This affects the
statement of the general associativity theorem for monoids in a lax monoidal category. Only the specific
case of the general associativity theorem as stated by Mac Lane holds, as follows.

3.2 Theorem. Let (A,µ) be a monoid in a (lax) monoidal category. Let An be the product given by
A2 = A ⊗ A,An+1 = A ⊗ An, i.e. parenthesized to the right. Define the composition µ(n) by µ(2) =
µ, µ(n+1) = µ ◦ (1⊗ µ(n)). Then

µ(n) ◦ (µ(k1) ⊗ · · · ⊗ µ(kn)) = µ(k1+···+kn) ◦ α′

for all n, ki > 2 where α′ stands for the canonical map to Ak1+···+kn .
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Proof. This is just the special case of the general associative law for monoids shown by Mac Lane, which
only depends on the existence of the canonical map α′ [20].

Now we have a condensed way of defining 2-fold operads.

3.3 Theorem. 2-fold operads in 2-fold monoidal V are monoids in Col(V).

Proof. A monoid in Col(V) is an object C in Col(V) with multiplication and unit morphisms. Since
morphisms of Col(V) are natural transformations the multiplication and unit consist of families of maps
in V indexed by the natural numbers, with source and target exactly as required for operad composition
and unit. The operad axioms are equivalent to the associativity and unit requirements of monoids.

This brings us back to the question of defining operads in an n-fold monoidal V using the higher
products and interchanges. This idea will correspond to a series of higher products, denoted by ⊗pq,
in the category of collections. These are defined just as for the first case ⊗12 above. Associators are as
described above for the first product, using ηpq for the associator α : A⊗pq (B⊗pq C) → (A⊗pq B)⊗pq C.
The unit for each is the collection (∅, I, ∅, . . . ) where ∅ is an initial object in V. Notice that these
products do not interchange; i.e they are not functorial with respect to each other. Notice also that the
associators in these categories of collections are not isomorphisms unless we are considering the special
cases of braiding or symmetry. Instead the category of collections with substitution product ⊗pq is lax
monoidal, by which we will mean that the associator is merely a natural transformation, which obeys
the pentagon coherence condition by the same argument as for ⊗12 above.

Now we will focus on the products ⊗(m−1)m in the category of collections in n-fold monoidal V, for
m 6 n, since these will be seen to suffice for defining all operad compositions. Before defining m-fold
operads as monoids with respect to ⊗(m−1)m, we note that there is also fibrewise monoidal structure.
This will be important in the description of the monoidal structure of the category of operads. In fact,
we have the following

3.4 Definition. Let (V,⊗1, . . . ,⊗n) be a strict n-fold monoidal category with coproducts and an initial
object ∅. For i = 1 . . . n and A an object of V let each of the functors (—⊗i A) and (A⊗i —) preserve
coproducts and let ∅ ⊗i A = ∅ and A⊗i ∅ = ∅. Let (V,

∐
,⊗1, . . . ,⊗n) be a strict (n + 1)-fold monoidal

category with distinct units for which forgetting the first tensor product (given by the coproduct) recovers
V. The unit for

∐
is the initial object ∅. Let n > m > 2. We denote by Colm(V) the category of collections

in V with the following products:

(B⊗̂1C)(j) =
∐
k>0

j1+···+jk=j

B(k)⊗m−1 (C(j1)⊗m · · · ⊗m C(jk))

and

(B⊗̂2C)(j) = B(j)⊗m+1C(j)
...

(B⊗̂n−m+1C)(j) = B(j)⊗nC(j)

3.5 Theorem. Colm(V) is an (n−m + 1)-fold lax monoidal category with (two) distinct strict units.
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Proof. The first tensor product is ⊗̂1 = ⊗(m−1)m and the others are the higher fibrewise products
starting with fibrewise ⊗m+1. Thus the unit for ⊗̂1 is I = (∅, I, ∅, . . . ) and the unit for all the other
products is M = (I, I, . . . ). It is not hard to check the unit conditions which are required for the
fibrewise products to be the multiplication for a monoid in the category of monoidal categories. The
extra requirement of the two sorts of unit is that M⊗̂1M = M and that I⊗̂kI = I for k > 1. These
equations do indeed hold.

Now we must check that there are interchangers, natural transformations

ξ1j : (A⊗̂jB)⊗̂1(C⊗̂jD) → (A⊗̂1C)⊗̂j(B⊗̂1D).

These utilize the ηij of V and thus exist by inspection of the terms of the compound products. For
example, in the product in Col2 V :

((A⊗̂2B)⊗̂1(C⊗̂2D))(2)

we find the term

((A(1)⊗3 B(1))⊗1 (C(2)⊗3 D(2)))
∐

((A(2)⊗3 B(2))⊗1 ((C(1)⊗3 D(1))⊗2 (C(1)⊗3 D(1))))

while in

((A⊗̂1C)⊗̂2(B⊗̂1D))(2)

we find the term(
(A(1)⊗1 C(2))

∐
(A(2)⊗1 (C(1)⊗2 C(1)))

)
⊗3

(
(B(1)⊗1 D(2))

∐
(B(2)⊗1 (D(1)⊗2 D(1)))

)
The map ξ12 thus uses first η23, then η13 and finally the hypothesis that (V,

∐
,⊗1, . . . ,⊗n) is an

(n + 1)-fold monoidal category; specifically instances of the interchange between
∐

and ⊗3. Thus the
external associativity axiom for ξ1j and the giant hexagon axiom for i, j, k = 1, j, k hold due to the
coherence theorem for strict iterated monoidal categories applied to the (n + 1)-fold monoidal category
(V,

∐
,⊗1, . . . ,⊗n). The internal associativity axiom holds due to functoriality of the products (since the

associators for ⊗pq use an equality followed by an interchange) as well as coherence. Note that in this
category there are distinct strict units, ∅ and I. Therefore the second part of the coherence theorem which
describes existence of maps does not hold. However since we verify the existence of maps by inspection,
the first part of the coherence theorem applies, which states that any two morphisms (sharing a common
source and target and both being formed of instances of the interchanges which obey the axioms of [2])
are the same morphism.

The unit conditions for the interchangers ξij are seen to hold based on the unit conditions for the
(n+1)-fold monoidal category (V,

∐
,⊗1, . . . ,⊗n) and on the hypothesis that ∅⊗i A = ∅ and A⊗i ∅ = ∅.

Thus the first product together with any of the fibrewise products are those of a 2-fold lax monoidal
category.

For the products ⊗̂2 and higher the associators and interchange transformations are fibrewise and the
axioms hold since they hold for each fiber.

3.6 Remark. In the context of [3] the lax functoriality of the tensor product with respect to the coproduct
is due to the hypothesis that the symmetric monoidal category V is closed (from the right) with respect
to the tensor product. This guarantees that that product preserves colimits on the first operand, since
the functor (—⊗B) has as a right adjoint the internal hom, denoted by [B,—]. Applied to the coproduct
this fact in turn implies that there is a canonical map in V from (A⊗B)

∐
(C⊗D) to (A

∐
C)⊗(B

∐
D).

From the universal properties of the coproduct it can be checked that this map satisfies the the middle
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interchange law that is required of a monoidal functor. Also in [3] Batanin points out that a fibrewise
product is a monoidal functor with respect to the collection product. In that paper the existence of the
transformation ξ depends on the symmetry (braiding) and the lax functoriality of the tensor product
with respect to the coproduct. In this paper we chose to simply include the necessary iterated monoidal
structure as a hypothesis, rather than the hypothesis of closedness, in the interest of generality.

Theorem 3.5 is quite useful for describing n-fold operads and their higher-categorical structure, es-
pecially when coupled with two other facts. The first is that monoids are equivalently defined as single
object enriched categories, and the second is the following result from [11] and [12], where the concept
of n-fold monoidal 2-category is discussed. In those sources the quantifier lax is sometimes left off, but
the proofs in question nowhere require the associator to be an isomorphism.

3.7 Theorem. For V n-fold (lax) monoidal with distinct strict units the category of enriched categories
over (V,⊗1) is an (n− 1)-fold (lax) monoidal 2-category with distinct strict units.

Proof. The proof in [11] holds exactly as it is stated but with the modification that given distinct strict
units Ii for the products ⊗i of V, we define unit enriched categories Ii in V-Cat to each have the single
object 0 and to have Ii(0, 0) = Ii+1. Then the unit axioms for distinct units play the same role in the
new proof as did the standard unit axioms in the original.

For our purposes we translate the theorem about enriched categories into its single object corollary
about the category Mon(V) of monoids in V.

3.8 Corollary. For V n-fold (lax) monoidal with distinct strict units, the category Mon(V) is an (n−1)-
fold (lax) monoidal 2-category with distinct strict units.

Proof. The product of enriched categories always has as its object set the cartesian product of the object
sets of its components. Thus one object enriched categories have products with one object as well.

3.9 Definition. If an n-fold monoidal category V has coproducts and (V,
∐

,⊗3, . . . ,⊗n) is an (n− 1)-
fold monoidal category in which each of the functors (— ⊗i A) and (A ⊗i —), i = 1 . . . n preserves
coproducts we define the category of m-fold operads Operm(V) to be the category of monoids in the
category of collections (Colm(V), ⊗̂1) for n > m > 2.

3.10 Corollary. Operm(V) is an (n−m)-fold monoidal 2-category.

Proof. Rather than starting with monoids in an n-fold monoidal V as in the previous corollary we are
actually beginning with monoids in (n−m + 1)-fold monoidal Colm(V). Note that in [11] the products
in V are assumed to have a common unit. To generalize to our situation here, where the unit for the
first product in the category of collections is distinct from the other units, we need to add slightly
to the definitions in [11]. When enriching (or more specifically taking monoids) we are doing so with
respect to the first available product. Thus the unit morphism for enriched categories has its domain
the unit for that first product, I. However the unit enriched category I has one object, denoted 0, and
I(0, 0) = M.

3.11 Remark. This last corollary justifies our focus on the first m products of V as opposed to any
subset of the n products. Our choice of focus is due to the way in which this focus allows us to describe
the resulting structure on the category of m-fold operads. Of course, we can use the forgetful functors
mentioned in Section 2 to pass from n-fold monoidal V to V with any of the subsets of products. The m-
fold operads do behave as expected under this forgetting, retaining all but the structure which depends
on the forgotten products. This will be seen more clearly upon inspection of the unpacked definition to
follow. In short, we will see that an m-fold operad is also an (m− 1)-fold operad.
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3.12 Remark. We note that since a symmetric monoidal category is n-fold monoidal for all n, then
operads in a symmetric monoidal category are n-fold monoidal for all n as well. More generally, if n > 3
and the interchanges are isomorphisms, then by the Eckmann-Hilton argument the products collapse into
one and the result is a symmetric monoidal category, and so operads in it are again n-fold monoidal for
all n. Here we are always discussing ordinary “non-symmetric,” (“non-braided”) operads. The possible
faithful actions of symmetry or braid groups can be considered after the definition, which we leave for a
later paper. We do point out that the proper direction in which to expand this work is seen in Weber’s
paper [30]. He generalizes by making a distinction between the binary and k-ary products in the domain
of the composition map γ : C(k)⊗(C(j1)⊗· · ·⊗C(jk)) → C(j). The binary tensor product is seen formally
as a pseudo-monoid structure and the k-ary product as a pseudo-algebra structure for a 2-monad which
can contain the information needed to describe actions of braid or symmetry groups. The two structures
are defined using strong monoidal morphisms, and so the products coincide and give rise to the braiding
which is used to describe the associativity of composition. To encompass the definitions in this paper we
would move to operads in lax-monoidal pseudo algebras, where instead of pseudo monoids and strong
monoidal morphisms in a pseudo algebra we would consider the same picture but with lax monoidal
morphisms.

The fact that monoids are single object enriched categories also leads to an efficient expanded definition
of m-fold operads in an n-fold monoidal category. Let V be an n-fold monoidal category.

3.13 Definition. For 2 6 m 6 n an m-fold operad C in V consists of objects C(j), j > 0, a unit map
J : I → C(1), and composition maps in V

γpq : C(k)⊗p (C(j1)⊗q · · · ⊗q C(jk)) → C(j)

for m > q > p > 1, k > 1, js > 0 for s = 1 . . . k and
k∑

n=1
jn = j. The composition maps obey the following

axioms:

1. Associativity: The following diagram is required to commute for all m > q > p > 1, k > 1, js > 0

and it > 0, and where
k∑

s=1
js = j and

j∑
t=1

it = i. Let gs =
s∑

u=1
ju and let hs =

gs∑
u=1+gs−1

iu.

The ηpq labeling the leftmost arrow actually stands for a variety of equivalent maps which factor
into instances of the pq interchange.

C(k)⊗p

(
k⊗

s=1
qC(js)

)
⊗p

(
j⊗

t=1
qC(it)

)
γpq⊗pid //

id⊗pηpq

��

C(j)⊗p

(
j⊗

t=1
qC(it)

)
γpq

��
C(i)

C(k)⊗p

(
k⊗

s=1
q

(
C(js)⊗p

(
js⊗

u=1
qC(iu+gs−1)

)))
id⊗p(⊗k

q γpq)

// C(k)⊗p

(
k⊗

s=1
qC(hs)

)γpq

OO

2. Respect of units is required just as in the symmetric case. The following unit diagrams commute
for all m > q > p > 1.
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C(k)⊗p (⊗k
qI)

1⊗p(⊗k
qJ )

��

C(k)

C(k)⊗p (⊗k
qC(1))

γpq

88qqqqqqqqqqq

I ⊗p C(k)

J⊗p1

��

C(k)

C(1)⊗p C(k)

γpq
99rrrrrrrrrr

3.14 Theorem. The description of m-fold operad in Definition 3.13 is equivalent to that given in
Definition 3.9.

Proof. If a collection has an operad composition γq,q+1 using ⊗q and ⊗q+1 then it automatically has
an operad composition for any pair of products ⊗p and ⊗s for p < s 6 q + 1. This follows from the fact
that for p < q we have natural transformations ηpq

AIIB : A ⊗p B → A ⊗q B, as described at the end of
Definition 2.1. Thus if we have γq,q+1 then we can form γps = γq,q+1 ◦ (ηpq ◦ (1 ⊗q ηs,q+1)). The new
γps is associative based on the old γ’s associativity, the naturality of η, and the coherence of η. Thus
follows our claim that generally operads are preserved as such by the forgetful functors mentioned in
Section 2 and specifically that an m-fold operad is also an (m − 1)-fold operad. The converse of this
latter statement is not true, as we will see by counterexample in the final section. It will demonstrate
the existence of m-fold operads which are not (m + 1)-fold operads.

It is also worth while to expand the definition of the tensor products of m-fold operads that is implicit
in their depiction as monoids in the category of collections in an n-fold monoidal category. Here is the
expanded version of the definition:

3.15 Definition. Let C,D be m-fold operads. For 1 6 i 6 (n−m) and using a ⊗′k to denote the product
of two m-fold operads, we define that product to be given by:

(C ⊗′i D)(j) = C(j)⊗i+m D(j).

We note that the new γ is in terms of the two old ones, for m > q > p > 1:

γpq
C⊗′iD

= (γpq
C ⊗i+m γpq

D ) ◦ ηp,i+m ◦ (1⊗p ηq,i+m)

where the subscripts denote the n-fold operad the γ belongs to and the η’s actually stand for any of the
equivalent maps which factor into instances of the indicated interchange. Note that this expansion also
helps make clear why it is that the monoidalness, or number of products, of m-fold operads must decrease
by the same number m. From the condensed version this is expected due to the iterated enrichment.
From the expanded view this allows us to define the new composition since in order for the products
of operads to be closed, γ for the ith product utilizes an interchange with superscript i + m. Defined
this way i can only be allowed to be as large as n − m. We demonstrate in the last section in fact a
counterexample which shows that the degree of monoidalness for the category of m-fold operads in an
n-fold monoidal category is in general no greater than n−m.

4. Examples of iterated monoidal categories

4.1 Lemma. Given a totally ordered set S with a least element e ∈ S, then the elements of S with
morphisms given by the ordering make up the objects of a strict monoidal category.

The category will also be denoted S. Its morphisms are given by the ordering means that there is only
an arrow a → b if a 6 b. The product is max and the 2-sided unit is the least element e. We must check
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that the product is functorial since this defines monoidal structure on morphisms. Here it is so since if
a 6 b and a′ 6 b′ then max(a, a′) 6 max(b, b′). Also the identity is clearly preserved.

4.2 Example. The basic example is the nonnegative integers N with their ordering 6 .

4.3 Lemma. Any ordered monoid with its identity element e also its least element forms the object set
of a 2-fold monoidal category.

Proof. Morphisms are again given by the ordering. The products are given by max and the monoid
operation: a ⊗1 b = max(a, b) and a ⊗2 b = ab. The shared two-sided unit for these products is the
identity element e. The products are both strictly associative and functorial since if a 6 b and a′ 6
b′ then aa′ 6 bb′ and max(a, a′) 6 max(b, b′). The interchange natural transformations exist since
max(ab, cd) 6 max(a, c)max(b, d). That is because

a 6 max(a, c) and b 6 max(b, d)

so

ab 6 max(a, c) max(b, d) and cd 6 max(a, c) max(b, d)

The internal and external unit and associativity conditions of Definition 2.1 are all satisfied due to
the fact that there is only one morphism between two objects. More generally, given any ordered n-fold
monoidal category with I the least object we can potentially form an (n + 1)-fold monoidal category
with morphisms ordering, and the new ⊗1 = max .

4.4 Example. Again we have in mind N with its ordering and addition.

Other examples of such monoids as in Lemma 4.3 are the pure braids on n strands with only right-
handed crossings [16]. Notice that braid composition is a non-symmetric example. Further examples are
found in the papers on semirings and idempotent mathematics, such as [18] and its references as well
as on the related concept of tropical geometry, such as [25] and its references. Semirings that arise in
these two areas of study would require some translation of the lemmas we have stated thus far, since
the idempotent operation is usually min and its unit ∞. Also, since the operation given by addition has
unit 0, we have to consider distinct units. Recall that the additional requirement is that the two distinct
units obey each other’s operations: i.e I1 ⊗2 I1 = I1 and I2 ⊗1 I2 = I2. For example, min(0, 0) = 0 and
∞+∞ = ∞.

4.5 Example. If S is an ordered set with least element e then by Seq(S) we denote the infinite sequences
X = {Xn}n>0 of elements of S for which there exists a natural number l(X) called the length such that
k > l(X) implies Xk = e and Xl(X) 6= e. Under lexicographic ordering Seq(S) is in turn a totally ordered
set with a least element. The latter is the sequence 0 where 0n = e for all n. We let l(0) = 0. The
lexicographic order means that A 6 B if either Ak = Bk for all k or there is a natural number n = nAB

such that Ak = Bk for all k < n, and such that An < Bn.
The ordering is easily shown to be reflexive, transitive, and antisymmetric. See for instance [23] where

the case of lexicographic ordering of n-tuples of natural numbers is discussed. In our case we will need
to modify the proof given in that source by always making comparisons of max(l(A), l(B))-tuples.

As a category Seq(S) is 2-fold monoidal since we can demonstrate two interchanging products. They
are max using the lexicographic order: A⊗1 B = max(A,B); and concatenation of sequences:

(A⊗2 B)n =

{
An, n 6 l(A)
Bn−l(A), n > l(A)
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Concatenation clearly preserves the ordering, and so Lemma 4.3 applies.

4.6 Example. Letting S be the set with a single element recovers Example 4.4 as Seq(S).

4.7 Lemma. If we have an ordered monoid (M,+) as in Lemma 4.3 and reconsider Seq(M) as in
Example 4.5 then we can describe a 3-fold monoidal category Seq(M,+) (with Seq(M) the image of
forgetting the third product of pointwise addition) if and only if the monoid operation + is such that
0 < a < b and c 6 d imply both a + c < b + d and c + a < d + b strictly.

Proof. The first two products are again lexicographic max and concatenation of sequences. The third
product ⊗3 is pointwise application of +, (A ⊗3 B)n = An + Bn. The last condition that the monoid
operation + strictly respect strict ordering is necessary to guarantee that the third product both respect
the lexicographic ordering and interchange correctly with concatenation. To see the former let sequences
A 6 B,C 6 D. Note that if A = B,C = D then A ⊗3 C = B ⊗3 D. Otherwise let k = min{j | Aj <
Bj or Cj < Dj}. Then (A⊗3 C)k < (B ⊗3 D)k and (A⊗3 C)i = (B ⊗3 D)i for i < k.

To see that ⊗3 respects the lexicographic ordering only if addition strictly respects the order, consider
a case where 0 < a < b and c 6 d but a+c = b+d. Then the sequences A = (a, a), B = (b, 0), C = (c, 0),
D = (d, 0) are such that lexicographically A < B and C 6 D but A⊗3C = (a+c, a) > B⊗3D = (b+d, 0).

To see the interchange (A⊗3 B)⊗2 (C⊗3 D) 6 (A⊗2 C)⊗3 (B⊗2 D) notice that we can assume that
l(A) > l(B). Then

Concat(A + B,C + D) 6 Concat(A,C) + Concat(B,D)

due to the fact that if D has a first non-zero term, it will be added to an earlier term of the concate-
nation of A and C in the second four-fold product.

4.8 Example. Seq(N,+) plays an important role in Example 5.5. Example interchanges in Seq(N,+)
are as follow. Let A = (0, 1, 2, 0, . . . ), B = (1, 1, 0, . . . ), C = (2, 1, 3, 0, . . . ) and D = (0, 2, 0, . . . ). Then

(A⊗2 B)⊗1 (C ⊗2 D) = (2, 1, 3, 0, 2, 0, . . . )
(A⊗1 C)⊗2 (B ⊗1 D) = (2, 1, 3, 1, 1, 0, . . . )

(A⊗3 B)⊗2 (C ⊗3 D) = (1, 2, 2, 2, 3, 3, 0, . . . )
(A⊗2 C)⊗3 (B ⊗2 D) = (1, 2, 2, 4, 1, 3, 0, . . . )

(A⊗3 B)⊗1 (C ⊗3 D) = (2, 3, 3, 0, . . . )
(A⊗1 C)⊗3 (B ⊗1 D) = (3, 2, 3, 0, . . . )

4.9 Remark. A non-example is seen if we begin with the monoid of Lemma 4.1, an ordered set with
a least element where the product is max. Here max does not strictly preserve strict ordering, and so
pointwise max does not respect lexicographic ordering. Neither do concatenation and pointwise max
interchange.

4.10 Corollary. Given any ordered n-fold monoidal category C with I the least object and ⊗1 the max,
and whose higher products strictly respect strict ordering, we can form an (n+1)-fold monoidal category
Seq(C).

Proof. The new products of Seq(C) are the lexicographic max, the concatenation, and the pointwise
application of ⊗i for i = 2 . . . n. The pointwise application of the original products to the sequences
directly inherits the interchange properties. For instance, if A,B,C, D ∈ Seq(C) then (An ⊗2 Bn) ⊗1
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(Cn ⊗2 Dn) 6 (An ⊗1 Cn) ⊗2 (Bn ⊗1 Dn) for all n, which certainly implies that the pointwise 4-fold
products are ordered lexicographically.

4.11 Example. Even more symmetrical structure is found in examples with a natural geometric rep-
resentation which allows the use of addition in each product. One such category is that whose objects
are Young diagrams, by which we mean the underlying shapes or diagrams of Young tableaux. These
can be presented by a decreasing sequence of nonnegative integers in two ways: the sequence that gives
the heights of the columns or the sequence that gives the lengths of the rows. We let ⊗3 be the product
which adds the heights of columns of two diagrams, ⊗2 adds the length of rows. We often refer to these
as vertical and horizontal stacking respectively. If

A = and B =

then A⊗2 B =

and A⊗3 B =

We can take as morphisms the totally ordered structure of the Young diagrams given by lexicographic
ordering applied to the sequences of column heights. Thus we may retain the lexicographic max as ⊗1,
and will refer to the entire category simply as the category of Young diagrams.

By previous discussion of sequences the Young diagrams with ⊗1 the lexicographic max and ⊗3 the
piecewise addition (thought of here as vertical stacking) form a subcategory of the 3-fold monoidal
category called Seq(N,+). To see that with the additional ⊗2 of horizontal stacking this becomes a valid
3-fold monoidal category we look at that operation from another point of view. Note that the horizontal
product of Young diagrams A and B can be described as a reorganization of all the columns of both A
and B into a new Young diagram made up of those columns in descending order of height. Rather than
(but equivalent to) the addition of rows, we see horizontal stacking as the concatenation of monotone
decreasing sequences (of columns) followed by sorting greatest to least. We call this operation merging.

4.12 Lemma. Let (S, 6,+) be an ordered monoid and consider the sequences Seq(S, +) with lexico-
graphic ordering, piecewise addition + and the function of sorting denoted by

s : Seq(S, +) → Seq(S, +)

Then the triangle inequality holds for two sequences: s(A + B) 6 s(A) + s(B).

Proof. Consider s(A+B), where we start with the two sequences and add them piecewise before sorting.
We can metamorphose this into s(A) + s(B) in stages by using an algorithm to sort A and B. Note
that if A and B are already sorted, the inequality becomes an equality. For our algorithm we choose
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parallel bubble sorting. This consists of a series of passes through the sequences comparing An and An+1

and comparing Bn and Bn+1 simultaneously. If the two elements of a given sequence are not already in
strictly decreasing order we switch their places. We claim that switching consecutive sequence elements
into order always results in a lexicographically larger sequence after adding piecewise and sorting. If both
the elements of A and of B are switched, or if neither, then the result is unaltered. Therefore without
loss of generality we assume that An < An+1 and that Bn+1 < Bn. Then we compare the original result
of sorting after adding and the same but after the switching of An and An+1. It is simplest to note that
the new result includes An+1 +Bn, which is larger than both An +Bn and An+1 +Bn+1. So after adding
and sorting the new result is indeed larger lexicographically. Thus since each move of the parallel bubble
sort results in a larger expression after first adding and then sorting, and after all the moves the result
of adding and then sorting the now pre-sorted sequences is the same as first sorting then adding, the
triangle inequality follows.

4.13 Theorem. The category of Young diagrams forms a 3-fold monoidal category.

Proof. The products on Young diagrams are ⊗1 = lexicographic max, ⊗2 = horizontal stacking and
⊗3 = vertical stacking. We need to check first that horizontal stacking, or merging, is functorial with
respect to morphisms (defined as the 6 relations of the lexicographic ordering.) The cases where A = B
or C = D are easy. For example let Ak = Bk for all k and Ck = Dk for all k < nCD, where nCD is
as defined in Example 4.5. Thus the columns from the copies of, for instance A in A⊗1 C and A⊗1 D
fall into the same final spot under the sortings right up to the critical location, so if C 6 D, then
A⊗1 C 6 A⊗1 D. Similarly, it is clear that A 6 B implies (A⊗1 D) 6 (B ⊗1 D). Hence if A 6 B and
C 6 D, then A⊗1 C 6 A⊗1 D 6 B ⊗1 D which by transitivity gives us our desired property.

Next we check that our interchange transformations will always exist. η1j exists by the proof of
Lemma 4.3 for j = 2, 3 since the higher products both respect morphisms(ordering) and are thus ordered
monoid operations. We need to check for existence of η23, i.e. we need to show that (A⊗3B)⊗2(C⊗3D) 6
(A ⊗2 C) ⊗3 (B ⊗2 D). This inequality follows from Lemma 4.12 on the triangle inequality for sorting.
To prove the new inequality we consider the special case of two sequences formed by letting A′ be A
followed by C and letting B′ be B followed by D. By “followed by” we mean padded by zeroes so that
l(A′) = max(l(A), l(B)) + l(C) and l(B′) = max(l(A), l(B)) + l(D). Thus piecewise addition of A′ and
B′ results in piecewise addition of A and B, and respectively C and D. Then to our new sequences A′

and B′ we apply the result of Lemma 4.12 and have our desired result.

Here is an example of the inequality we have just shown to always hold. Let four Young diagrams be
as follow:

A = B = C = D =

Then the fact that (A⊗3 B)⊗2 (C ⊗3 D) 6 (A⊗2 C)⊗3 (B ⊗2 D) appears as follows:

6
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4.14 Remark. Alternatively we can create a category equivalent to the non-negative integers in Exam-
ple 4.2 by pre-ordering the Young diagrams by height. Here the height h(A) of the Young diagram is the
number of boxes in its leftmost column, and we say A 6 B if h(A) 6 h(B). Two Young diagrams with
the same height are isomorphic objects, and the one-column stacks form both a full subcategory and
a skeleton of the height preordered category. Everything works as for the previous example of natural
numbers since h(A⊗2B) = h(A)+h(B) and h(A⊗1B) = max(h(A), h(B)). There is also a max product;
the new max with respect to the height preordering is defined as

max(A,B) =

{
A, if B 6 A

B, otherwise.

In the height preordered category this latter product is equivalent to horizontal stacking, ⊗1.

4.15 Remark. Notice that we can start with any totally ordered monoids {M,6,+} such that the identity
0 is less than any other element and such that 0 < a < b and c 6 d implies both a + c < b + d and
c+a < d+b for all a, b, c ∈ G. We create a 3-fold monoidal category ModSeq(M,+) with objects monotone
decreasing finitely non-zero sequences of elements of M and morphisms given by the lexicographic
ordering. The products are as described for the category of Young diagrams ModSeq(N,+) in the previous
example. The common unit is the zero sequence. The proofs we have given in the previous example for
M = N are all still valid.

By Corollary 4.10 we can also consider 4-fold monoidal categories such as Seq(ModSeq(M)) and
other combinations of Seq and ModSeq. For instance if ModSeq(N,+) is our category of Young diagrams
then ModSeq(ModSeq(N,+)) has objects monotone decreasing sequences of Young diagrams, which we
can visualize along the z-axis. Here the lexicographic-lexicographic max is ⊗1, lexicographic merging is
⊗2, pointwise merging (pointwise horizontal or y-axis stacking) is ⊗3 and pointwise-pointwise addition
(pointwise x-axis stacking) is ⊗4. For example, if:
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then

A⊗1 B =
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4.16 Example. It might be nice to retain the geometric picture of the products of Young diagrams in
terms of vertical and horizontal stacking, and stacking in other directions as dimension increases. This is
not found in the just illustrated category, which relies on the merging viewpoint. The “diagram stacking”
point of view is restored if we restrict to 3-d Young diagrams. We can represent these objects as infinite
matrices with finitely many nonzero natural number entries, and with monotone decreasing columns and
rows. We require that Ank be decreasing in n for constant k, and decreasing in k for constant n. We
choose the sequence of rows to represent the sequence of sequences, i.e. each row represents a Young
diagram which we draw as being parallel to the xy plane. This choice is important because it determines
the total ordering of matrices and thus the morphisms of the category. Thus y-axis stacking is horizontal
concatenation (disregarding trailing zeroes) of matrices followed by sorting the new longer rows (row
merging). x-axis stacking is addition of matrices. Now we define z-axis stacking as vertical concatenation
of matrices followed by sorting the new long columns (column merging).
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Here is a visual example of the three new products, beginning with z-axis stacking, labeled ⊗1: if
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then we let
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Note that in this restricted setting of decreasing matrices the lexicographic merging of sequences (rows)
of two matrices does not preserve the total decreasing property (decreasing in rows and columns).

These three products just shown preserve the total sum of the entries in both matrices, and do interact
via interchanges to form the structure of a 3-fold monoidal category. Renumbered, they are: ⊗1 (z-axis
stacking) is the vertical concatenation of matrices followed by sorting the new longer columns, ⊗2 (y-axis
stacking) is horizontal concatenation of matrices followed by sorting the new longer rows and ⊗3 (x-axis
stacking) is the addition of matrices. For comparison, here is the same example of the products as just
given above shown by matrices. Only the non-zero entries of the matrices are shown.

A =


4 3 1 1
4 2 1 1
3 2 1
1 1 1

B =

 3 1
2 1
1 1



A⊗1 B =



4 3 1 1
4 2 1 1
3 2 1
3 1 1
2 1
1 1
1 1


A⊗2 B =


4 3 3 1 1 1
4 2 2 1 1 1
3 2 1 1 1
1 1 1

 and A⊗3 B =


7 4 1 1
6 3 1 1
4 3 1
1 1 1



4.17 Theorem. The category of 3-d Young diagrams with lexicographic ordering and the products just
described possesses the structure of a 3-fold monoidal category.

The proof will require the following two lemmas.

4.18 Lemma. For two sequences of n elements each, the first given by a1 . . . an and the second by
b1 . . . bn, then considering pairs of elements aσ(i) and bτ(i) for permutations σ, τ ∈ Sn, we have the
following inequality:

max(min(aσ(1), bτ(1)), . . . ,min(aσ(n), bτ(n))) 6 min(max(a1, . . . , an),max(b1, . . . , bn)).

Proof. This is true since for i = 1 . . . n we have ai 6 max(a1, . . . , an) and bi 6 max(b1, . . . , bn). Therefore
min(aσ(i), bτ(i)) 6 min(max(a1, . . . , an),max(b1, . . . , bn)) and the inequality follows.

4.19 Lemma. For a given finite matrix M with n rows, we claim that first sorting each row (greater
to lesser) and then sorting each resulting column gives a final result that is lexicographically less than or
equal to the final result of sorting each column of M and then each row. The lexicographic ordering here
is applied to the sequences of entries read from the matrices by rows.

Proof. This is seen by a chain of inequalities that each correspond to a single step in a parallel bubble
sorting of the rows of M. Consider the final result of sorting each column vertically and then each row.
We gradually evolve this into the reverse procedure by performing a series of steps, each of which begins
by comparing two adjacent columns in the current stage of the evolution. The step consists of switches
that insure each horizontal pair in the columns is in order, i.e. switching the positions of the two elements
in each row only if the one in the left column is smaller than the one in the right. We call this a parallel
switch, or just a switch. The result of taking the switched matrix and vertically sorting its columns and
then horizontally sorting its rows will be shown to be lexicographically less than or equal to the result
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of vertically sorting columns and then horizontally sorting rows before the parallel switch. The entire
series of steps together constitute sorting each row of M. Since after vertically sorting a matrix which
began with sorted rows the new rows still remain sorted, then at the end of the evolution we are indeed
doing the reverse procedure; that is sorting horizontally first and then vertically.

For a single step in the parallel bubble sort, we claim that after the parallel switch and then vertical
sorting of the two adjacent columns the pairs in each resulting row will be either all identical to those in
the result of vertically sorting the unswitched columns, or there will be a first row k in which the pair in
the switched version of the columns consists of one element equal to one element of the corresponding
pair in the unswitched version and one element less than the other element in the unswitched version.

Since no other columns are changed at this step, then this will imply that after vertically sorting the
other columns and then all the rows in both matrices, the two resulting matrices will be identical or just
identical up to the kth row, where the switched matrix will be lexicographically less than the unswitched.

The claim for two columns follows from repeated application of Lemma 4.18. Let the two columns be
a1 . . . an and b1 . . . bn After the parallel switching, the left column holds the max of each pair and the
right the min. Vertical sorting moves the max of each column to the top row, and leaves all the new
rows (of two elements each) still sorted left to right. Located in the left position of the new top row is

max(max(a1, b1), . . . ,max(an, bn)) = max(max(a1, . . . , an),max(b1, . . . , bn))

the latter of which is the in the top row of the vertically sorted unswitched columns. The right position
in the top row of the switched columns is

r = max(min(a1, b1), . . . ,min(an, bn)),

which is less than or equal to the other element in the top row of the vertically sorted unswitched columns

s = min(max(a1, . . . , an),max(b1, . . . , bn)),

by the preceding Lemma 4.18 (with trivial permutations). If r < s then we are done. If r = s then we note
that the remaining rows 2 . . . n contain the same collection of elements ai and bi in both the switched
and unswitched columns, i.e. we may assume that in vertically sorting either version we moved aj and
bl to the top row. Note that since the rows in the switched version are sorted, max(al, bl) > min(aj , bj)
and max(aj , bj) > min(al, bl). Thus the max(al, bj) will always be in the left column and min(al, bj) in
the right.

Then the second row of the vertically sorted switched pair of columns is

max(max(a1, b1), . . . , ̂max(aj , bj), . . . , ̂max(al, bl), . . . ,max(an, bn),max(al, bj))

in the first position and

max(min(a1, b1), . . . , ̂min(aj , bj), . . . , ̂min(al, bl), . . . ,min(an, bn),min(al, bj))

in the second position, where the hats indicate missing elements. Whereas the second row of the vertically
sorted unswitched columns is made up of

max(max(a1, . . . , âj , . . . , an)) and max(max(b1, . . . , b̂l, . . . , bn)).

Thus the left position in the second row of the switched version is the same value as one of the elements
in the second row of the unswitched vertically sorted columns. By Lemma 4.18 with the evident per-
mutations, the right position in the second row is less than or equal to the other element in the second
row of the unswitched vertically sorted columns. If less than, then we are done, if equal then the process
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continues. If the 1st through (n − 1)st rows of the switched and unswitched columns contain the same
values after vertical sorting, then so do the nth rows. This completes the proof of the lemma.

Now we can proceed to the proof of Theorem 4.17.

Proof. (of Theorem 4.17) We already have existence of η23 by the argument about pointwise application
of two interchanging products in the proof of Corollary 4.10. Here the two products are merging and
vertical stacking applied pointwise to the sequence of rows seen as a sequence of Young diagrams. To
show existence of η13 : (A⊗3 B)⊗1 (C⊗3 D) → (A⊗1 C)⊗3 (B⊗1 D) we need to check that sorting each
of the columns of two pairs of vertically concatenated matrices before pointwise adding gives a larger
lexicographic result with respect to rows than adding first and then sorting columns. This follows from
Lemma 4.12, applied to each pair of sequences which are the nth columns in the two new matrices formed
by vertically concatenating A and C and respectively B and D, padded with zeroes so that adding the
new matrices results in adding A and B and respectively C and D. From the lemma then we have that
(A⊗1 C)⊗3 (B ⊗1 D) gives a result whose nth column is lexicographically greater than or equal to the
nth column of (A⊗3 B)⊗1 (C ⊗3 D). This implies that either the pairs of respective columns are each
equal sequences or that there is some least row i and column j such that all the pairs of columns are
identical in rows less than i and that the two rows i are identical in columns less than j, but that the
i, j position in (A⊗3 B)⊗1 (C ⊗3 D) is less than the corresponding position in (A⊗1 C)⊗3 (B ⊗1 D).
Thus the existence of the required inequality is shown.

The existence of η12 is due to the fact that we are ordering the matrices by giving precedence to the
rows. The two four-fold products can be seen as two alternate operations on a single large matrix M .
This matrix is constructed by arranging A,B,C, D with added zeroes so that (A⊗1 C)⊗2 (B⊗1 D) is the
result of first sorting each column vertically, greater values at the top, and then each row horizontally,
greater values to the left, while (A⊗2 B)⊗1 (C ⊗2 D) is achieved by sorting horizontally first and then
vertically. Recall that in the ordering rows are given precedence over columns. Here is an illustration of
the inequality, showing the process of constructing the large matrix.

A =
[

3 3 2
1 1

]
B =

 9
9
9

C =
[

2
1

]
D =

[
5

]

M =


3 3 2 9
1 1 0 9
0 0 0 9
2 0 0 5
1 0 0 0



(A⊗2 B)⊗1 (C ⊗2 D) =


9 3 3 2
9 2 1
9 1
5
1

 <


9 3 3 2
9 2 1
9 1
5 1

 = (A⊗1 C)⊗2 (B ⊗1 D)

The proof that this inequality always holds uses Lemma 4.19. By applying that lemma to the large
matrix M constructed of the four matrices A,B,C, D as described above, we have the proof of the
theorem.
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Now we define the general n-fold monoidal category of n-dimensional Young diagrams. The proof of
the theorem for three dimensions plays an important role in the general theorem, since each interchanger
involves two products. Once we have decided to represent Young diagrams of higher dimension by arrays
of natural numbers which decrease in each index, it is clear that each interchanger will either involve
directly two of the indices of the array or one index as well as pointwise addition.

4.20 Definition. The category of n-dimensional Young diagrams consists of
1. Objects Ai1i2...in−1 , finitely nonzero n-dimensional arrays of nonnegative integers which are mono-

tone decreasing in each index, and
2. Morphisms the order relations in the lexicographic ordering with precedence given to lesser indices.

There are n ways to take a product of two n-dimensional Young diagrams, which we visualize as
arrays of natural numbers in n− 1 dimensions. The products correspond to merging, i.e. concatenating
and then sorting, in each of the n− 1 possible directions, as well as pointwise addition as ⊗n. The order
of products is the reverse of the order of the indices. That is, for k = 1 . . . n − 1, ⊗k is merging in the
direction of the index in−k.

4.21 Theorem. The category of n-dimensional Young diagrams with the above products constitutes an
n-fold monoidal category.

Proof. We must show the existence of the interchangers ηjk as inequalities for 1 6 j < k 6 n. First we
demonstrate the existence of the required inequality when k < n. For A,B,C, D n-dimensional Young
diagrams seen as (n−1)-dimensional arrays, we let Mi1i2...in−1 be a large array made by concatenating A
and B in the direction of the index ik, concatenating C and D in the direction of the index ik, and then
concatenating those two results in the direction of the index ij . Zeros are added (see above for the two
dimensional array example) so that the products (A⊗k B)⊗j (C⊗k D) and (A⊗j C)⊗k (B⊗j D) can then
both be described as sorting Mi1i2...in−1 in two directions; first ik then ij or vice versa respectively. That
the inequality holds is seen as we compare the results position by position in the lexicographic order, i.e.
reading lower indices first. The first differing value we come upon, say in location (i1i2 . . . in−1), then will
necessarily be the first difference in the sub-array of two dimensions in the directions ij and ik determined
by the location (i1i2 . . . in−1). Thus by the proof of Lemma 4.19, the value in (A⊗k B)⊗j (C ⊗k D) is
less than the corresponding value in (A⊗j C)⊗k (B ⊗j D).

Secondly we check the cases that have k = n. We can see the four-fold products as operations on two
arrays, one made by concatenating A and C in the ij direction, and another made by concatenating
B and D in the ij direction, padded with zeroes so that adding the two pointwise results in pointwise
addition of A with B, and of C with D. Then (A⊗k B)⊗j (C⊗k D) is adding first and then sorting in the
ij direction, while (A⊗j C)⊗k (B⊗j D) is the reverse process. To see that the correct inequality holds we
again compare the results position by position in lexicographic order. The first differing value is also the
first difference between the two corresponding 2 dimensional sub-arrays which are in the directions ij and
in−1. These sub-arrays are the results of sorting and then pointwise addition and vice versa respectively,
and so by the proof for existence of η13 in Theorem 4.17 the desired result is shown.

5. Examples of n-fold operads

The categories from Section 4 give us a domain in which we can exhibit some concrete examples of
operads. To have an operad with an element C(0) we will need to “compactify” by adjoining a new initial
object with the desired properties to the example categories based on totally ordered sets.
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5.1 Definition. For V an n-fold monoidal category whose morphisms are the 6 relations of a totally
ordered set with least element, we define its compactification V by adding a new initial object which we
will denote by ∅. The morphisms will still be given by the original ordering augmented by letting ∅ be
the new least element. All the original products have their original definition on objects of V. However,
for i = 1 . . . n and A an object of V we let ∅ ⊗i A = ∅ and A⊗i ∅ = ∅. Note that even when the original
product in V was given by max, the new product in V gives ∅ when one of the operands is ∅.

5.2 Theorem. For V an n-fold monoidal category whose morphisms are the 6 relations of a totally
ordered set with least element, the compactification V has the structure of an n-fold monoidal category.
Moreover (V,

∐
,⊗1, . . . ,⊗n) is a strict (n + 1)-fold monoidal category with distinct units for which

forgetting the first tensor product (given by the coproduct) recovers V.

Proof. Our products are all still strictly associative. By definition ∅ ⊗i I = ∅. The diagrams will all
commute since the morphisms are the ordering. Therefore we only need to check that the interchangers
still exist when one of the operands is ∅. Indeed in this case the two products in question both become
∅ and the interchanger is the identity. Unit conditions are still obeyed for the same reason.

Now V has coproducts given by
∐

= max, where max is taken with respect to the new total order with
∅ as least element. Thus ∅ is the strict unit for

∐
. Denoting by 0 the common unit of the other products,

by definition we have that 0
∐

0 = 0 and ∅ ⊗i ∅ = ∅. Therefore the unit conditions for the interchangers
involving the two units hold as well. We have already demonstrated that

∐
(max) interchanges with

any product which preserves ordering. Our new products of V do preserve the new ordering.

In all the following examples the operad composition is associative since it is based upon ordering,
so all we need check for is the existence of that composition. We will refer to the example categories
developed in the previous section, but assume that we are dealing with their compactification. Note that
each of the following examples satisfy the hypothesis of Theorem 3.5 since

∐
(max) distributes over each

⊗i, since each product preserves the ordering.

5.3 Example. Of course C(j) = ∅ and C(j) = 0 for all j are trivially operads, where 0 is the monoidal
unit. First we look at the simplest interesting examples: 2-fold operads in an ordered monoid such as N,
where ⊗1 is max and ⊗2 is +. We always set C(0) = ∅ but often only list the later terms. A nontrivial 2-
fold operad in N is a nonzero sequence {C(j)}j>0 of natural numbers which has the property that for any
j1 . . . jk, max(C(k),

∑
C(ji)) 6 C(

∑
ji) and for which C(1) = 0. This translates into saying that for any

two whole numbers x, y we have that C(x+y) > C(x)+C(y) and that C(1) = 0. The latter condition both
satisfies the unit axioms and makes it redundant to also insist that the sequence be monotone increasing.
Perhaps the first example that comes to mind is the Fibonacci numbers. Minimal examples are formed
by choosing a starting term or terms and then determining each later nth term. These are minimal in
the sense that the principle which determines each of the later terms in succession is that of choosing the
minimal next term out of all possible such terms. For a starting finite sequence 0, a2, . . . , al which obeys
the the axioms of a 2-fold operad so far, the operad C0,a2,...,al

is found by defining terms Ca1,...,al
(n) for

n > l to be the maximum (in general the coproduct!) of all the values of max(C(k),
∑k

i=1 C(ji)) where
the sum of the ji is n. Some basic examples are the following sequences.

C0,1 = (∅, 0, 1, 1, 2, 2, 3, 3, . . . ), C0,0,1 = (∅, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, . . . )
C0,2 = (∅, 0, 2, 2, 4, 4, 6, 6, . . . ), C0,0,2 = (∅, 0, 0, 2, 2, 2, 4, 4, 4, 6, 6, 6, . . . )
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and

C0,1,2,4,8 = (∅, 0, 1, 2, 4, 8, 8, 9, 10, 12, 16, 16, 17, 18, 20, 24, . . . ).

It is clear that the growth of these sequences oscillates around linear growth in a predictable way.

5.4 Theorem. If “arbitrary” starting terms 0, a2, . . . , ak ∈ N are given (themselves of course obeying
the axioms of a 2-fold operad), then the nth term of the 2-fold operad C0,a2,...,ak

in N is given by

an = aq + pak where n = pk + q, for p ∈ N, 0 6 q < k.

Proof. We need to show that

an = max
j1+···+jl=n

{max(al,
l∑

i=1

aji
)} = aq + pak

where n = pk + q, for p ∈ N, 0 6 q < k. First we note that aq + pak appears as a term in the overall
max, so that an > aq + pak.

Now we check that max(al,
∑l

i=1 aji
)} is always less than or equal to aq +pak. We need only consider

the cases in which l < n. Since al is included at least once as one of the aji
, we need to show only that∑l

i=1 aji is always less than or equal to aq + pak where the sum of the ji is n. This follows by strong
induction on n. The base cases n = 1 . . . k hold by definition. We can assume ji > 0 since C(0) = ∅. Let
ji = pik + qi for pi ∈ N, and 0 6 qi < k. We may assume without loss of generality that at least one of
the ji > k, since if not then the sum of the aji

is less than another sum with aj1+j2 replacing aj1 + aj2 ,
and k < n. Then

∑
qi = n− k

∑
pi = pk + q − k

∑
pi < n. Thus we have:

l∑
i=1

aji
=

∑
aqi

+ ak

∑
pi

6 a(k(p−
∑

pi)+q) + ak

∑
pi

= aq + (p−
∑

pi)ak + ak

∑
pi

= aq + pak.

The first inequality is by the assumption that the terms in the sequence do form an operad, and the
following equality is by our induction assumption.

5.5 Example. Consider the 3-fold monoidal category Seq(N,+) of lexicographically ordered finitely
nonzero sequences of the natural numbers (here we use N considered as an example of an ordered
monoid), with products ⊗1 the lexicographic max , ⊗2 the concatenation and ⊗3 the pointwise addition.
An example of a 2-fold operad in Seq(N,+) that is not a 3-fold operad is the following:

Let B(0) = ∅ and let B(j)i = 1 for i < j , 0 otherwise. We can picture these as follows:

B(1) = , B(2) = , B(3) = , B(4) = , B(5) = , . . .

This is a 2-fold operad, with respect to the lexicographic max and concatenation. For instance the
instance of composition γ12 : B(3)⊗1 (B(2)⊗2 B(1)⊗2 B(3)) → B(6) appears as the relation:

<
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However, the relation

>

shows that γ23 : B(3)⊗2 (B(1)⊗3 B(3)⊗3 B(2)) → B(6) does not exist, so that B is not a 3-fold operad.

5.6 Example. Next we give an example of a 3-fold operad in Seq(N,+). Let C(0) = ∅ and let C(j) =
(j − 1, 0 . . . ). We can picture these as follows:

C(1) = , C(2) = , C(3) = , C(4) = , C(5) = , . . .

First we note that the operad C just given is a 3-fold operad since we have that the γ23 : C(k) ⊗2

(C(ji) ⊗3 · · · ⊗3 C(jk)) → C(j) exists. For instance γ23 : C(3) ⊗2 (C(1) ⊗3 C(3) ⊗3 C(2)) → C(6) appears
as the relation

6

Then we remark that as expected the composition γ12 : C(k) ⊗1 (C(ji) ⊗2 · · · ⊗2 C(jk)) → C(j) also
exists. For instance γ12 : C(3)⊗1 (C(1)⊗2 C(2)⊗2 C(3)) → C(6) appears as the relation

6

5.7 Example. Now we consider some products of the previous two described operads in Seq(N,+). We
expect B⊗′C given by (B⊗′C)(j) = B(j)⊗3 C(j) to be a 2-fold operad and it is. It appears thus:

∅ , , , , , , . . .

We demonstrate the tightness of the existence of products of operads by pointing out that D(j) =
B(j)⊗2 C(j) does not form an operad. We leave it to the reader to demonstrate this fact.

Now we pass to the categories of Young diagrams in which the interesting products are given by
horizontal and vertical stacking. It is important that we do not restrict the morphisms to those between
diagrams of the same total number of blocks in order that all the operad compositions exist.
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5.8 Theorem. A sequence of Young diagrams C(n), n ∈ N, in the category ModSeq(N,+), is a 2-fold
operad if C(0) = ∅ and for n > 1, h(C(n)) = f(n) where f : Z+ → N is a function such that f(1) = 0
and f(i + j) > f(i) + f(j).

Proof. These conditions are not necessary, but they are sufficient since the first implies that C(1) = 0
which shows that the unit conditions are satisfied; and the second implies that the maps γ exist. We see
existence of γ12 since for ji > 0, h(C(k)⊗1 (C(j1)⊗2 · · · ⊗2 C(jk))) = max(f(k),max(f(ji))) 6 f(j). We
have existence of γ13 and γ23 since max(f(k),

∑
f(ji)) 6 f(j).

5.9 Example. Examples of f include (x− 1)P (x) where P is a nonzero polynomial with coefficients in
N. This is easy to show since then P will be monotone increasing for x > 1 and thus (i+ j−1)P (i+ j) =
(i−1)P (i+j)+jP (i+j) > (i−1)P (i)+jP (j)−P (j). By this argument we can also use any f = (x−1)g(x)
where g : N → N is monotone increasing for x > 1.

For a specific example with a handy picture that also illustrates again the nontrivial use of the
interchange η we simply let f = x − 1. Then we have to actually describe the elements of ModSeq(N)
that make up the operad. One nice choice is the operad C where C(n) = {n − 1, n − 1, ..., n − 1}, the
(n− 1)× (n− 1) square Young diagram.

C(1) = 0, C(2) = , C(3) = , . . .

For instance γ23 : C(3)⊗2 (C(1)⊗3 C(3)⊗3 C(2)) → C(6) appears as the relation

6

An instance of the associativity diagram with upper left position C(2) ⊗2 (C(3) ⊗3 C(2)) ⊗2 (C(2) ⊗3

C(2)⊗3 C(4)⊗3 C(5)⊗3 C(3)) is as follows:
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γ23

−→

↓ γ23

↓ η23 15× 15 square

↑ γ23

γ23

−→

5.10 Example. Again we note that the conditions in Theorem 5.8 are not necessary ones. In fact, given
any Young diagram B we can construct a unique operad that is minimal in each term with respect to
ordering of the diagrams. Again by minimal we mean that the principle which determines each of the
later terms in succession is that of choosing the minimal next term out of all possible such terms.

5.11 Definition. The 2-fold operad in the category of Young diagrams generated by a Young diagram
B is denoted by CB and defined as follows: CB(1) = 0 and CB(2) = B. Each successive term is defined to
be the lexicographic maximum of all the products of prior terms which compose to the term in question;
for n > 2 and over

∑
ji = n:

CB(n) = max{CB(k)⊗2 (CB(j1)⊗3 · · · ⊗3 CB(jk))}.

5.12 Theorem. If a Young diagram B consists of total number of blocks q, then the term CB(n) of the
operad generated by B consists of q(n− 1) blocks.

Proof. The proof is by strong induction. The number of blocks is given for CB(1) and CB(2). Since the
definition is in terms of a maximum over composable products, if the number of blocks in each piece of
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any such a product is assumed by induction to be respectively q(k− 1), and q(j1 − 1) . . . q(jk − 1), then
the total number of blocks in each product (and thus the maximum) is q(n− 1) since

∑
ji = n.

Here are the first few terms of the operad thus generated by B = .

∅ , 0 , , , , , , , , , . . .

Note that height of any given column grows linearly, but that the length of any row grows logarithmically.

5.13 Theorem. The minimal operad C of Young diagrams which begins with C (1) = 0 and C (2) =
, has terms C (n) that are built of n − 1 blocks each, and whose monotone decreasing sequence

representation is given by the formula

C (n)k = Round
(
n/2k

)
; k = 1, 2, . . .

where rounding is done to the nearest integer and .5 is rounded to zero.

Proof. The proof of the formula for the column heights is by way of first showing that each term in C
can be built canonically as follows:

C (n) =

dn
2 e

C (dn
2 e)⊗2 (

︷ ︸︸ ︷
C (2)⊗3 · · · ⊗3 C (2)︸ ︷︷ ︸⊗3C (1) )

bn
2 c

We must demonstrate that the maximum of all C (k) ⊗2 (C (j1) ⊗3 · · · ⊗3 C (jk)) where
∑

ji = n is
precisely given by the above canonical construction. We make the assumption (of strong induction) that
this holds for terms before the nth term, and check for the inequality C (k)⊗2 (C (j1)⊗3 · · · ⊗3 C (jk))
less than or equal to the canonical construction. The case in which there are only 0 or 1 odd integers
among the jk’s is directly observed using the strong induction. If there are two or more odd integers
among the jk’s and the first column of the diagram they help determine is greater than or equal to the
first column of C (k) then the inequality holds by induction on the size of the first column. If there are
two or more odd integers among the jk’s and the first column of the diagram they help determine is less
than the first column of C (k) then we check the sub-cases n odd and n even. For n even the result is
seen directly, and for n odd we again rely on induction.

For comparison to the previous example of the operad with square terms, the instance of the associa-
tivity diagram with upper left position C (2)⊗2(C (3)⊗3C (2))⊗2(C (2)⊗3C (2)⊗3C (4)⊗3C (5)⊗3C (3))
is as follows:
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γ23

−→

↓ γ23

↓ η23 C (16)
↑ γ23

γ23

−→

There may be interesting applications of the type of growth modeled by operads in iterated monoidal
categories. Since the growth is in multiple dimensions it suggests applications to studies of allometric
measurements. Broadly this refers to any n characteristics of a system which grow in tandem. These
measurements are often used in biological sciences to try to predict values of one characteristic from
others, such as tree height from trunk diameter or crown diameter, or skeletal mass from total body mass
or dimensions, or even genomic diversity from various geographical features. Allometric comparisons are
often used in geology and chemistry, for instance when predicting the growth of speleothems or crystals.
There are also potential applications to networks, where the growth of diameter or linking distance of
a network is related logarithmically to the growth in number of nodes. In computational geometry, the
number of vertices of the convex hull of n uniformly scattered points in a polygon grows as the log of n.

This sort of minimal growth in the terms of the operad could be perturbed, for example by replacing

the term in the above with the alternate term , which would affect the later terms in turn. An

interesting avenue for further investigation would be the comparison of such perturbations to determine
the relative effects of a given perturbation’s size and position of occurrence in the sequence. What we
really want is a formula for minimal operads in Young diagrams analogous to the one found above for
operads in N.

We conclude with a description of the concepts of n-fold operad algebra and of the tensor products
of operad algebras.

5.14 Definition. Let C be an n-fold operad in V. A C-algebra is an object A ∈ V and maps

θpq : C(j)⊗p (⊗j
qA) → A

for n > q > p > 1, j > 0.
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1. Associativity: The following diagram is required to commute for all n > q > p > 1, k > 1, js > 0 ,

where j =
k∑

s=1
js.

C(k)⊗p (C(j1)⊗q · · · ⊗q C(jk))⊗p (⊗j
qA)

γpq⊗pid //

id⊗pηpq

��

C(j)⊗p (⊗j
qA)

θpq

��
A

C(k)⊗p ((C(j1)⊗p (⊗j1
q A))⊗q · · · ⊗q (C(jk)⊗p (⊗jk

q A)))
id⊗p(⊗k

q θpq)
// C(k)⊗p (⊗k

qA)

θpq

OO

2. Units: The following diagram is required to commute for all n > q > p > 1.

I ⊗p A

J⊗p1

��

A

C(1)⊗p A

θpq

;;vvvvvvvvvv

5.15 Example. Of course the initial object is always an algebra for every operad, and every object is
an algebra for the initial operad. For a slightly less trivial example we turn to the height preordered
category of Remark 4.14. Define the operad B(j) as in Example 5.5. Then any nonzero sequence A is an
algebra for this operad.

5.16 Remark. Let C and D be m-fold operads in an n-fold monoidal category. If A is an algebra of C
and B is an algebra of D then A⊗i+m B is an algebra for C ⊗′i D.

That the product of n-fold operad algebras is itself an n-fold operad algebra is easy to verify once we
note that the new θ is in terms of the two old ones:

θpq
A⊗i+mB = (θpq

A ⊗i+m θpq
B ) ◦ ηp(i+m) ◦ (1⊗p ηq(i+m))

Maps of operad algebras are straightforward to describe–they are required to preserve structure; that is
to commute with θ.
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