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Abstract. We look at a game theoretic scenario in
which an industrial firm has the option of voluntar-
ily controlling the pollutants it originates. A regu-
lating agency sets the tax rate on corporate profits
as well as a Pigouvian pollution tax: preset per-
centages of projected cleanup cost which must be
covered by the firm. The regulator spends tax rev-
enue to cover the remaining percentage of cleanup
costs, and also has the option of subsidizing addi-
tional pollution prevention measures. We describe
and illustrate the pure and mixed Nash equilibria
arising in several variations of the game. We iden-
tify situations with multiple simultaneous equilib-
ria, and classify those for which the mixed strategy
prevents more pollution than either pure strategy.

1. Introduction

Figure 1. Treated fracking fluid headed
for Black Lick Creek in Indiana County, Pa.
Photo by Seamus Murphy/VII, as seen in
[4].

The word that economists use for a side effect of produc-
tion is externality. This seemingly neutral term has earned
a negative connotation. Externalities, like side effects in
general, are usually unwelcome.

The discovery of a natural resource in new abundance is
followed by a rapid growth in the industry of extracting it–
and an equally rapid rise in pollution of the habitats nearby.
There will be a cleanup cost, and it must be paid by those
benefitting from the resource. That includes the firm which

is polluting and the taxpayers who are happy to purchase the
product at the pump or through their furnaces. Two ques-
tions are raised. It must be decided when the cost should
be paid–as prevention or as cure–and who should pay what
percentage of each. The regulator’s objective is to find a
balance between public safety, economic prosperity and tax
revenues.

Using a mathematical model will always fall short when
politics and psychology are major factors. Philosophical jus-
tification for studying a social problem mathematically is
found in demonstrating that a solution exists. This empha-
sized phrase is the punch-line of a joke involving fire and
a mathematician with a pitcher of water, but it can also
support an argument for action.

1.1. Main theorem. By compromise, we refer to the mu-
tual decision of government and industry to each pay for
some fraction of pollution abatement. In game theory terms,
compromise is a mixed equilibrium strategy. We prove that
in certain situations there are simultaneously several Nash
equilibria. For example, there are games with three simulta-
neous equilibria: one strategy where the firm alone pays to
prevent pollution, another where only the government does,
and a third in which the two players pay for precisely calcu-
lated percentages of the preventative controls. We show that
the third, mixed strategy often results in a greater amount
of prevented pollution, while finding a compromise between
corporate profit and tax revenues. Here is a more precise
statement, regarding the game we describe in Table 2 and
Section 3.3.1.

Theorem 1. If the product of the best-case prevention-to-
cleanup cost ratios for a firm and a regulator is less than
the difference of the cube and the square of the fraction of
pollution prevented, then the mixed equilibrium strategy pre-
vents more pollution than either pure equilibrium strategy.
The converse is also true.

The symbolic statement of the hypothesis of this theorem
is FR < δ2−δ3. The definitions are discussed in Section 2.1.
The proof is found in Section 3.3.1. Theorems 3 and 4 show
how the hypothesis is changed when the Pigouvian tax varies
in the game. There is a quite concrete implication of Theo-
rem 1:

Corollary 2. If the product of the prevention-to-clean-up

cost ratios for a firm and a regulator is greater than
4
27

then
the mixed equilibrium strategy prevents less pollution than
either pure equilibrium strategy.

2. Assumptions and justifications.

The chief justification for all our assumptions is this: we
restrict our attention to a simple case which allows us to
tractably describe the effects of policy on an economic game
involving pollution.
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Firm

Controls

Firm does

not  Control

controls
I III

Reg. does

not control
II IV

Regulator

Table 1. Labels for the four game outcomes.

We assume there are only two players: Player 1 is the
regulator and Player 2 is the firm. Before the game the reg-
ulator decides the values of two game parameters: the cor-
porate income tax and the percentage of expected cleanup
cost to be covered by the firm, the pollution tax known
as a Pigouvian tax. The regulator spends from its income
tax revenue to cover the remaining percentage of cleanup
costs. Cleanup costs are incurred in correcting the effects
of either an accidental spill or intentional dumping of less-
than-pristine waste-water into the environment. Corrective
action could include habitat restoration, resettlement, cov-
ering medical bills and compensating losses.

In the game proper both the firm and the regulator decide
independently whether or not to pay for a given preventa-
tive measure, which we call the optional control of pollution.
Example controls include paying for extra quality control
(inspectors) or preventative technology (oil well monitor-
ing). They might also include paying for actual cleaning
technology, such as additional carbon dioxide scrubbers at
a coal-burning plant or filtering of waste water at a fracking
operation. There are four possible outcomes in this non-
zero sum game, and the payoff values are expected values,
not random.

The firm gets to deduct the cost of optional prevention
from their taxable corporate profit. The Pigouvian pollution
tax however is not deductable. This latter pollution tax is
assessed as a tax on production, so the question of detec-
tion of pollution is not relevant. We study the effect on the
game when the rate of the pollution tax, as a percentage of
cleanup covered by the firm, varies depending on whether
the voluntary optional controls are applied.

The expected amount of pollution depends on the quan-
tity of production. The profit realized by the firm is the
difference between the price it can charge and the cost of
producing that quantity, including the costs of pollution
abatement. We assume a perfectly competitive market, and
a constant price per unit of production. This eliminates the
possibility that the the costs of pollution abatement might
be simply passed on to the consumers.

Our most important assumption is that the quantity of
production (per year) will remain constant throughout the
game, regardless of the variations in the costs of pollution
prevention and pollution cleanup to the firm. Since the cost
as a function of quantity produced is almost certainly non-
linear, our assumption is only justified in situations where
the practical optimum level of production is constrained
away from the theoretical optimum that would maximize
profit for the firm, even after the extra costs are factored in.

Thus, although the four different strategies for the firm
and regulator result in four different payoff curves for the
firm, that payoff is always maximized at the same right hand
limit–a production quantity called Qmax that is determined
by technological, logistical or legal constraints. We illustrate
this in Figure 3. For instance, the amount of natural gas or
oil produced by a fracking well or wells may be limited by
the carrying capacity of a pipeline. Alternately the land
available for drilling might be limited, so that a company
operating the wells on that land is operating at capacity
but has no way to expand its operations, even though the-
oretically it is producing less than would maximize profit.
Finally there might be a legal limit, for instance on water
usage, that forces the operation to stay at or below a certain
rate of production.

The goal of our analysis is to show where the Nash equi-
libria lie in a list of cases. A Nash equilibrium is a set of
strategies (one for each of our two players) for which the pay-
offs are maximized for each player, when the other player’s
strategy is held constant [6]. We assume that the choices for
preventative controls made by the regulator and the firm
will stabilize: they will fall into a Nash equilibrium, mixed
or pure.

Our study is comparable to a snapshot, although we will
mention how the decisions might be made in sequence or
repeatedly over a series of years. Recent studies of similar
situations have opted to simplify the number of varying fac-
tors, while adding realistic complexity to their treatment of
the passage of time. In [7] Tapiero considers a very similar
game; to his model we add the factor δ (effectiveness of the
controls) and the variable Pigouvian penalties. In [8] the
same author considers the game in a queueing framework.
The game is rendered tractable in that paper by deriving the
model from equilibrium arguments of the queue. In [1] the
authors study polluter/regulator games as stochastic pro-
cesses, to be solved using control theory.

2.1. The model. Several constant values are given at the
start of the game, and several variables may be set by the
regulating agency. The constant values include the profit
and costs of preventative controls (for the time period de-
termined by the application.) Also, we assume there exists a
probability of pollution depending on quantity of production–
which is therefore a constant since production is assumed
constant. This probability can be interpreted as the fre-
quency or the likelihood of pollution, or as the fraction of
total pollutant released. Either way, the probability p mul-
tiplied by the cost of pollution ∆ can be interpreted as the
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Firm   controls (y ) Firm does not control (1 − y )

f 1 = (1 − τ ) (PF − CF )

f 2 = (1 − τ )(PF − CF )

Regulator − (1 − δ)2p∆(1 − α 1)

− (1 − δ)p∆(1 − α 1)

controls (x)
r1 = τ (PF − CF ) − CR

r2 = τ (PF − CF )

− (1 − δ)2p∆ α 1

− (1 − δ)p∆ α 1

Reg.  does

f 3 = (1 − τ )PF − (1 − δ)p∆(1 − α 3 )

f 4 = (1 − τ )PF − p∆(1 − α 4)

not control

(1 − x)

r3 = τPF − CR − (1 − δ)p∆ α 3

r4 = τPF − p∆ α 4

Table 2. The payoff matrix: Firm’s payoff
is above regulator’s in each cell.

expected cost of cleanup for the time period. Finally there
is the fraction δ of cleanup costs prevented by a set of op-
tional controls: we assume it to be the same whether those
controls are implemented by the firm or regulator.

The constants are:

PF . . . the profit being achieved by the firm,
before tax and before paying for any
voluntary preventative controls and
mandatory cleanup costs,

CF . . . the cost to the firm of optional control,
CR . . . the cost to the regulator of optional control,
p∆ . . . the total expected cleanup costs,
δ . . . the effectiveness of the optional

controls,
obeying: PF > 0, 0 ≤ p ≤ 1 and 0 ≤ δ ≤ 1.
Thus if either just the firm or just the regulator applies

optional controls the remaining expected cost of cleanup is
(1− δ)p∆. If both sets of optional controls are applied then
the cost of cleanup is decreased again, leaving the remaining
cost of cleanup, (1 − δ)2p∆. A possible future study might
introduce two different strengths, δf and δr, for two differ-
ent controls purchased by the firm and the regulator. Here
though we are considering only one sort of control at a time.
Thus the regulator’s purchase can be seen as a subsidy of
pollution control actually performed by the firm. That also
explains why we consider two separate costs of control: the
regulator may not pay the same for a filter as would a private
firm.

The variables determined by the regulator (via its policy
making body) are the tax rate applied to the firm’s profit
and the variable percentages of cleanup cost covered by the
regulator. Tax is assessed before any cleanup costs incurred
by the firm, but after any optional preventative control costs
are subtracted from the profits.

τ . . . the corporate tax rate
on profit minus any cost of controls,

α1 . . . the percentage of cleanup costs
paid by the regulator
if the firm opts for extra controls,

α3 . . . the percentage of cleanup costs
paid by the regulator
when the firm does not apply extra
controls but the regulator does,

α4 . . . the percentage of cleanup costs
paid by the regulator
if neither firm nor regulator
opt for extra controls.

For instance, if neither the regulator nor the firm adopts
the optional controls, then the cost of cleanup for the regula-
tor is α4p∆ and the cost of cleanup to the firm is (1−α4)p∆.
If only the firm adopts the extra controls, then the cost of
cleanup to the regulator is α1(1− δ)p∆.

The subscripts used on the variable α correspond to out-
comes (labeled by corresponding Roman numerals) in the
2 × 2 game shown in Table 1. The subscript 2 is not used
since we assume that if the firm adopts controls then it is
guaranteed a single percentage α1. The percentages (1−αi)
multiplied by the expected cost of cleanup can be interpreted
as the penalties paid by the firm for polluting. Here we as-
sume that 0 ≤ αi ≤ 1, but an easy extension would allow
negative values of αi to indicate penalties beyond the cost
of cleanup.

The payoff for the firm is the amount of after-tax profit
remaining after paying for cleanup and/or prevention. Simi-
larly the payoff for the regulator is the amount of tax revenue
retained. Table 2 shows the payoff for the firm above the
payoff for the regulator in each of the four outcomes from
Table 1.

We have also introduced new variables in Table 2. These
will be useful in describing mixed strategies. If pollution
is being filtered, x and y are the proportions of the full
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strength of the filtering mechanism. That is, the regulator
purchases a filter that has only fraction x of effectiveness
δ, and the firm purchases a filter of fractional strength yδ.
Alternatively, in a series of time periods, perhaps multiple
years, the variable x could be the proportion of the years for
which the regulator adopts preventative controls, while the
variable y is the proportion of the years for which the firm
controls. Or, if there are a number of extraction wells (or
mines or power plants), x and y may also be interpreted as
the proportions of facilities with extra controls applied by
the regulator or firm respectively.

We will assume that the controls, such as a pair of filters
of fractional strengths x and y, are used by the firm in a
coordinated fashion. Thus the expected fraction (frequency)
of the pollution released into the environment is given by:

(1− xδ)(1− yδ)p.
Notice that this expression is derived either by considering
the remaining fraction of pollution after successively sub-
tracting the two fractions xδ and yδ; or alternatively by
applying x and y to the respective amounts of pollution in
Table 2, as in the calculation of the mixed payoffs.

3. Analyzing the game

3.1. Penalties. The following analysis will be organized into
sections comparing the results for several ways of choosing
values for αi. In each we will compare the pure and mixed
strategies. The cases we consider are as follows:

(1) α1 = α3 = α4,
(2) α1 = α3 > α4,
(3) α1 = α3 < α4,
(4) α1 > α3 = α4.

Since αi is the fraction of cleanup covered by the regula-
tor, a smaller value of this fraction can be considered a con-
tingent penalty levied on the firm. In case (1) the penalty is
uniform; there is no contingent portion of the penalty based
on the optional controls. In case (2) the contingent penalty
is only applied if neither the firm nor the regulator pay for
extra controls. Here the regulator rather generously waives
the penalty on the firm for not controlling as long as the
regulator pays for the additional controls itself. Case (3) is
the reverse situation; the contingent penalty is waived only
when neither the firm nor the regulator pay for extra con-
trols. Finally, in case (4) the contingent penalty is applied
whenever the firm opts not to take the extra preventative
measures.

3.2. Commonalities. Before considering these cases we per-
form the analysis common to all of them. First we define
two new quantities from the given constants. Both quanti-
ties are defined using the fraction α1. Recall that α1 gives
the fraction of cost of cleanup payed by the regulator in the
best-case scenario, when both parties simultaneously pay
for extra prevention. We can refer to the following ratios as
best-case cost ratios. By F we denote the ratio of control
cost to cleanup cost for the firm, and by R the same ratio
for the regulator.

F =
(1− τ)CF
(1− α1)p∆

and R =
CR
α1p∆

.

3.2.1. Pure equilibria. A pure equilibrium is when one of the
four cells in the game describes a Nash equilibrium–that is,
when x, y ∈ {0, 1}. Pure Nash equilibrium strategies exist in
the regions of Figure 1 when the following inequalities hold:

I. f1 ≥ f3 and r1 ≥ r2. Thus

F ≤ (1− δ)1− α3

1− α1
− (1− δ)2 and R ≤ δ − δ2

II. f2 ≥ f4 and r2 ≥ r1. Thus

F ≤ 1− α4

1− α1
− 1 + δ and R ≥ δ − δ2

III. f3 ≥ f1 and r3 ≥ r4. Thus

F ≥ (1− δ)1− α3

1− α1
− (1− δ)2 and R ≤ α4

α1
− (1− δ)α3

α1

IV. f4 ≥ f2 and r4 ≥ r3. Thus

F ≥ 1− α4

1− α1
− 1 + δ and R ≥ α4

α1
− (1− δ)α3

α1
.

3.2.2. Mixed equilibria. Whether or not a pure strategy ex-
ists, there may also be mixed strategies that represent equi-
libria. If the firm controls y percent of the time and the
regulator controls x percent of the time, then their respec-
tive payoffs are:

fm = y(xf1 + (1− x)f2) + (1− y)(xf3 + (1− x)f4)

rm = x(yr1 + (1− y)r3) + (1− x)(yr2 + (1− y)r4).
A Nash equilibrium occurs when the firm and regulator

choose percentages x and y such that neither could get a
better payoff by unilaterally changing their choice. That
means fm would be at a local max in the y direction and rm
would be at a local max in the x direction. So we set partial
derivatives equal to zero: ∂yfm = 0 and ∂xrm = 0. Solving
yields:

x = (f4 − f2)/(f1 − f2 − f3 + f4)

and

y = (r4 − r3)/(r1 − r3 − r2 + r4).
Thus, via simplifying and writing in terms of F and R:

x =
(1− δ)(1− α1)− (1− α4) + (1− τ)CF /p∆

(1− δ)(1− α1)− (1− α4) + (1− δ)(1− α3)− (1− δ)2(1− α1)

=
F + 1− δ − 1−α4

1−α1

δ − δ2 + (1− δ) 1−α3
1−α1

− 1−α4
1−α1

and

y =
(1− δ)α3 − α4 + CR/p∆

(1− δ)α3 − α4 + (δ − δ2)α1

=
R+ (1− δ)α3

α1
− α4

α1

δ − δ2 + (1− δ)α3
α1
− α4

α1

.
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Remark 1. In theory the rates τ and αi could be set to
ensure an equilibrium in which both players prevent addi-
tional pollution, or to avoid the situation in which neither
do. Realistically the cost to the overall economy might be
too high. There will often be a mixed strategy. Here policy
might be set in order to maximize both x and y (as close to
1 as possible). Ideally then we set y = 1 and find:

α1 =
CR

(δ − δ2)p∆
.

Then setting x = 1 leads to:

τ = 1− (1− δ)(1− α3)− (1− δ)2(1− α1)
CF /p∆

.

3.3. Case 1. We begin with the “base” case, in which the
percentage responsibilities for cleanup are always the same:
α1 = α3 = α4.

Now the pure equilibria, using the labels from Table 1,
occur when:

I. F ≤ δ − δ2 and R ≤ δ − δ2

II. F ≤ δ and R ≥ δ − δ2

III. F ≥ δ − δ2 and R ≤ δ
IV. F ≥ δ and R ≥ δ.

Notice that if outcome I is an equilibrium, then F ≤
F + δ2 ≤ δ and R ≤ R + δ2 ≤ δ. Thus the f1 ≥ f3 and
f2 ≥ f4, showing that controlling for pollution is a dom-
inant strategy for the firm; and the same is true for the
regulator. Similarly, if outcome IV is an equilibrium then
not controlling pollution is dominant for both players.

For the mixed strategies, the requirement that x, y are
both nonnegative fractions of 1 implies that δ − δ2 ≤ F ≤ δ
and that δ − δ2 ≤ R ≤ δ.

We can illustrate these equilibria as regions on a graph,
where the axes are labeled by F and R. Figure 2 shows the
results.

F

R

δ

δ

δ − δ

δ − δ

2

2

III. III.

III.

II. II.

II.

I.

IV.

II, III , or mixed.

Figure 2. Nash equilibria relative to F
and R in case 1.

Remark 2. If our ideal is minimizing pollution, then we look
at how we might achieve equilibrium either in region I (a
pure strategy) or in a mixed strategy as close as possible to
it. Hence we choose

α1 =
CR

(δ − δ2)p∆

and then

τ = 1− (δ − δ2)p∆− CR
CF

.

Using these approximate values for α1 and τ in the defi-
nitions of F and R gives:

FR = δ2 − δ3 − (δ3 − δ4) < δ2 − δ3.

This inequality is the hypothesis of Theorem 1, which is
expected since maximizing x and y should also maximize
pollution prevention.

Example. We look at a simple example to illustrate several
of the facts just described:

Given: Calculated:
PF = 1000 F = 0.192
∆ = 500 R = 0.32
CF = 40 δ − δ2 = 0.1875
CR = 40 x = 0.992
α1 = α3 = α4 = 0.5 y = 0.764
τ = 0.4 fm = 568
δ = 0.75 rm = 334.436
p = 0.5

Figure 3 shows a hypothetical pre-tax profit curve and
four hypothetical payoff curves for the firm. Over the con-
straining quantity Qmax we find the four payoff values that
are calculated using the formulas from Table 2. Since F and
R lie between δ and δ − δ2 we predict three equilibria, two
pure and one mixed, in the resulting game:

Firm controls Firm does not control

f
1 = 568 .1875

Reg.

controls
r

1 = 336 .1875

Reg. does

f 3 = 568 .75

f
4 = 475

not control

r
3 = 328 .75

r
4 = 275

r
1 = 336 .1875

r
3 = 328 .75

r
4 = 275

f
2 = 544 .75

r
2 = 352 .75r
2 = 352 .75

The two pure equilibria are as predicted in outcomes II
and III, and the mixed equilibrium is found at x = 0.992
and y = 0.764. The two pure equilibria both result in a
new frequency of pollution given by (1 − δ)p = 0.125. The
mixed strategy, however, gives a new frequency of pollution
(1 − xδ)(1 − yδ)p = 0.0546. Thus the mixed strategy has
better than halved the expected amount of pollution from
either pure strategy. At the same time, the payoff for the
regulator in the mixed strategy is rm = 334.436, better than
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one of the equilibria strategies. The firm is happy about the
mixed strategy, since its payoff is fm = 568, only slightly
less than in its best-case pure equilibrium strategy.

0 Q

f
1 = 568 .1875

f
2 = 544 .75

f 3 = 568 .75

f
4 = 475

P
F
= 1000

max

III I
II IV

Figure 3. A hypothetical profit curve and
four payoff curves depending on the strate-
gies chosen in the game of our first example.
The cost functions are unknown, but our as-
sumption is that the maximum payoffs are
found at a constraining limit on production.

3.3.1. Proof of Theorem 1. The preceding example leads us
to investigate the question of when, in general, the mixed
strategy turns out to prevent more pollution than either
pure strategy (where just one player controls the pollution.)
This happens when

(1− xδ)(1− yδ)p < (1− δ)p,
which reduces quickly to:

xyδ < x+ y − 1.
In the current case, when no extra penalties depend on

the chosen strategy, we have:

x =
δ − F
δ2

and y =
δ −R
δ2

.

Then the condition becomes:

FR < δ2 − δ3,

which is the proof of Theorem 1.
In the preceding example, δ2 − δ3 = .1406 and FR =

0.0614, illustrating the predictive power of the theorem.

The corollary to Theorem 1 states that if FR >
4
27

then
the mixed strategy prevents less pollution than the pure
ones. This is seen by noting that the maximum value of
δ2− δ3 for 0 ≤ δ ≤ 1 occurs at δ = 2

3 . In Figure 4 we see the
entire curve.

3.4. Case 2. Here the penalty on the firm is waived if the
firm does not control but the regulator does. This might
seem counterintuitive, but it may be coupled with higher
taxes. When α1 = α3 > α4 the pure equilibria, again using
the labels from Table 1, occur when:

I. F ≤ δ − δ2 and R ≤ δ − δ2

II. F ≤ δ + α1−α4
1−α1

and R ≥ δ − δ2

δ
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

δ − δ
2 3

Figure 4. The maximum of this curve is 4
27 .

III. F ≥ δ − δ2 and R ≤ δ −
(

1− α4
α1

)

IV. F ≥ δ + α1−α4
1−α1

and R ≥ δ −
(

1− α4
α1

)
.

For the mixed strategies, the requirement that x is a non-
negative fraction of 1 implies that

δ − δ2 ≤ F ≤ δ +
α1 − α4

1− α1
.

The requirement that y is a nonnegative fraction of 1 leads
to two subcases:

(2a) If 1− α4
α1

< δ2, then

δ − δ2 ≤ R ≤ δ −
(

1− α4

α1

)
.

(2b) If 1− α4
α1

> δ2 , then

δ −
(

1− α4

α1

)
≤ R ≤ δ − δ2.

Figures 5 and 6 show the results for subcases (2a) and
(2b) respectively.

Remark 3. In both figures showing case 2 we see that the
region marked as II has increased in area relative to the
region marked II in case 1. We can argue qualitatively from
these figures that all else being equal, the situation in which
the firm is the only controller is more likely to occur in case
2.

Since case (2a) has the possibility of 3 equilibria, we again
consider what conditions guarantee that the mixed equilib-
rium will result in greater pollution abatement.

Theorem 3. In case (2a), the mixed equilibrium will result
in greater pollution abatement if and only if:

FR+
1− δ
α1

(
α1 − α4

1− α1

)
(α1 − α4 + δ − 2α1δ + α1R− (1− α1)F )

< δ2 − δ3.
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F

R

δ

δ

δ − δ

δ − δ

2

2

III. III.

II.I. II.

II.

IV.

III. II, III , or mixed.

δ
1− α

α  − α  
 + 4

1

1

δ
α

 α  
  − (            )4

1

1−  

Figure 5. A chart displaying the results of
Case (2a), when 1− α4

α1
< δ2.

F

R

δ

δ

δ − δ

δ − δ

2

2

III.

II. II.

II.

IV.

III. mixed.

IV.

I.

δ
1− α

α  − α  
 + 4

1

1

δ
α

 α  
  − (            )4

1

1−  

Figure 6. A chart displaying the results of
Case (2b), when 1− α4

α1
> δ2.

Proof. As in Theorem 1 the mixed equilibrium prevents more
pollution when xyδ < x+ y − 1. Here we use the conditions
of case (2a) and do some algebraic reducing. The simpli-
fication was first performed by hand and then checked by
computer. �

Example. We illustrate the first subcase (2a) with another
simple example.

Given: Calculated:
PF = 1000 F = 0.2479
∆ = 250 R = 0.2478
CF = 55 δ − δ2 = 0.45− 0.2025 = 0.2475
CR = 7 x = 0.998
α1 = α3 = 0.226 y = 0.997
α4 = 0.2 1− α4

α1
= 0.115

τ = 0.564 δ − (1− α4
α1

) = 0.335
δ = 0.45 fm = 382.717
p = 0.5 rm = 517.513

Here the values of F and R fall in the range for which
there are three equilibria. Within this example we have
decided to also minimize pollution. To do so, we have cal-
culated and used the near-optimal values:

α1 ∼ CR
(δ − δ2)p∆

∼ 0.226

and

τ ∼ 1− (δ − δ2)p∆− CR
CF

∼ 0.565.

These choices for τ and α1 ensured that x and y are close
to 1. Here is the game:

f 1 = 382 .75

r1 = 517 .434

f 3 = 382 .7875

f 4 = 336

r3 = 541 .4625

r4 = 539

Firm controls Firm does not control

Reg.

controls

Reg. does

not control

r1 = 517 .434 r3 = 541 .4625

r4 = 539

f 2 = 358 .8

r2 = 517 .442

As predicted there are three equilibria including the two pure
strategies at II and III. The inequality in Theorem 3 holds
in this example: filling in the given values gives 0.0863 <
0.1114. That fact predicts the next: the two pure equilibria
both result in a new frequency of pollution given by (1 −
δ)p = 0.275, while the mixed strategy gives the much lower
frequency of pollution (1− xδ)(1− yδ)p = 0.152.

Example. We return to a variation of our simple example
to illustrate the second subcase (2b):

Given: Calculated:
PF = 1000 F = 0.44
∆ = 250 R = 0.187
CF = 55 δ − δ2 = 0.45− 0.2025 = 0.2475
CR = 7 x = 0.443
α1 = α3 = 0.3 y = 0.535
α4 = 0.2 1− α4

α1
= 0.33

τ = 0.3 δ − (1− α4
α1

) = 0.1167
δ = 0.45 fm = 622.96
p = 0.5 rm = 268.5
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Since F lies between δ and δ− δ2 and R between δ− (1−
α4
α1

) and δ − δ2, we predict only one mixed equilibrium:

f 1 = 635 .03

r1 = 265 .156

f 3 = 651 .875

f 4 = 600

r3 = 272 .375

r4 = 275

Firm controls Firm does not control

Reg.

controls

Reg. does

not control

f 2 = 613 .375

r2 = 262 .875

r1 = 265 .156 r3 = 272 .375

r4 = 275r2 = 262 .875

As expected, here there is only the mixed equilibrium.

3.5. Case 3. Here a penalty on the firm is applied whenever
either the regulator or the firm is paying for extra controls.
This is really counterintuitive, and we include it for contrast.
If α1 = α3 < α4 then pure equilibria occur just as in Case
2, when:

I. F ≤ δ − δ2 and R ≤ δ − δ2

II. F ≤ δ + α1−α4
1−α1

and R ≥ δ − δ2

III. F ≥ δ − δ2 and R ≤ δ −
(

1− α4
α1

)

IV. F ≥ δ + α1−α4
1−α1

and R ≥ δ −
(

1− α4
α1

)
.

For the mixed strategies, the requirement that y is a non-
negative fraction of 1 implies that

δ − δ2 ≤ R ≤ δ −
(

1− α4

α1

)
.

The requirement that x is a nonnegative fraction of 1 leads
to two subcases.

(3a) If α4−α1
1−α1

< δ2, then

δ − δ2 ≤ F ≤ δ − α4 − α1

1− α1
.

(3b) If α4−α1
1−α1

> δ2 , then

δ − α4 − α1

1− α1
≤ F ≤ δ − δ2.

Figures 7 and 8 show the results for subcases (3a) and
(3b) respectively.

Remark 4. In both figures showing case 3 we see that the
region marked as III has increased in area relative to the
region marked III in case 1. We can argue qualitatively
from these figures that all else being equal, the situation in
which the regulator is the only controller is more likely to
occur in case 3.

3.6. Case 4. Common sense leads us to the case in which
a penalty is applied whenever the firm fails to implement
optional controls. Thus α1 > α3 = α4. To simplify the
notation we define

β =
α1 − α4

1− α1
(1− δ)− δ2.

δ − δ

δ − δ
2

2

I II

III III
  

δ

F

R

δ

II

IV

IIIII II, III or mixed

 +δ
1− α

α− α 4

δ − (1− α
α 4 )

1

1

Figure 7. A chart displaying the results of
Case (3a).

III III
  

δ

F

R

δ

IV

I  II II

IVIII III

Mixed 

 +δ
1− α

α − α4

1

δ − (  − α
α 4 )

1
δ − δ

2

δ − δ
2

1

1

Figure 8. A chart displaying the results of
Case (3b).

Now the pure equilibria are as follow:

I. F ≤ δ + β and R ≤ δ − δ2

II. F ≤ δ + α1−α4
1−α1

and R ≥ δ − δ2

III. F ≥ δ + β and R ≤ δ α4
α1

IV. F ≥ δ + α1−α4
1−α1

and R ≥ δ α4
α1
.

For the mixed strategies, the requirement that x is a non-
negative fraction of 1 implies that

δ + β ≤ F ≤ δ +
α1 − α4

1− α1
.

The requirement that y is a nonnegative fraction of 1 leads
to two subcases.

(4a) If 1− α4
α1

< δ, then

δ − δ2 ≤ R ≤ δα4

α1
.
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(4b) If 1− α4
α1

> δ , then

δ
α4

α1
≤ R ≤ δ − δ2.

Since case (4a) has the possibility of 3 equilibria, we again
consider what conditions guarantee that the mixed equilib-
rium will result in greater pollution abatement.

Theorem 4. In case (4a), the mixed equilibrium will result
in greater pollution abatement if and only if:

FR+
1− δ
α1

(
α1 − α4

1− α1

)
(α1 − α4 + δ − 2α1δ − (1− α1)F )

< δ2 − δ3.

Proof. As in Theorem 1 the mixed equilibrium prevents more
pollution when xyδ < x+ y − 1. Here we use the conditions
of case (4a) and do some algebraic reducing. The simpli-
fication was first performed by hand and then checked by
computer. �

Figures 9, 10, 11 and 12 show the results for subcases (4a)
and (4b) with β > 0 and β < 0 respectively.

Remark 5. In all figures showing case 4 we see that the
regions marked as I and II have increased in area relative
to the similarly marked regions for case 1. We can argue
qualitatively from these figures that all else being equal, the
situation in which the firm is the only controller is more
likely to occur in case 4. Even more importantly, the optimal
situation in which both players control pollution is most
likely in case 4.

δ − δ
2

IIIII

I IIII

III IVIII

δ

F

R

δ

II, III 

and mixed

δ + β

δ 
α
α

4

 +δ
1− α

α − α4

1

δ − δ
2

1

1

Figure 9. A chart displaying the results of
Case (4a), β > 0.

Example. Here is an example that illustrates case 4a with
β < 0, and with three equilibria.

II

I

F

R

δ

III IV

δ+β
II, III and mixed

III

II

II

δ − δ
2

 +δ
1− α

α − α4

1

δ − δ
2

II

δδ 
α
α

4

1

1

I

Figure 10. A chart displaying the results
of Case (4a), β < 0.

Given: Calculated:
PF = 1000 F = 0.384 β = −0.4625
∆ = 500 R = 0.24 δ + β = 0.2875
CF = 80 δ − δ2 = 0.1875
CR = 30 x = 0.888
α1 = 0.5 y = 0.8 δ α3

α1
= .45

α3 = α4 = 0.3 fm = 541.565
τ = 0.4 rm = 334.4 δ + α1−α3

1−α1
= 1.15

δ = 0.75
p = 0.5

f
1 = 544 .1875

r
1 = 330 .1875

f
3 = 556 .25

f
4 = 425

r
3 = 351 .25

r
4 = 325

Firm controls Firm does not control

Reg.

controls

Reg. does

not control

f
2 = 520 .75

r
2 = 336 .75

r
1 = 330 .1875 r

3 = 351 .25

r
4 = 325r

2 = 336 .75

The two pure equilibria are as predicted in outcomes II
and III, and the mixed equilibrium is found at x = 0.888
and y = 0.8. The two pure equilibria both result in a new
frequency of pollution given by (1− δ)p = 0.125. The mixed
strategy, however, gives a new frequency of pollution (1 −
xδ)(1− yδ)p = 0.06678. Thus the mixed strategy has nearly
halved the expected amount of pollution from either pure
strategy.
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II

IIII

IV

III II

IVIII

mixed

I

I

2

F

δ

δ+β

δ
1− α

α − α  
 + 4

1

δ − δ

δ Rδ − δ
2δ 

α4
α1

1

Figure 11. A chart displaying the results
of Case (4b), with β < 0.

2

II

II

δ

F

R

δ

IV

δ+β

I

I

III

mixed

II

II

IVδ
1− α

α − α  
 + 4

1

δ − δ
2δ 

α4
α1

δ − δ

1

Figure 12. A chart displaying the results
of Case (4b), with β > 0.

Example. Here is a final example from case (4b) with β >
0.

Given: Calculated:
PF = 1000 F = 0.576 β = 0.0919
∆ = 500 R = 0.236 δ + β = 0.4819
CF = 120 δ − δ2 = 0.2379
CR = 29.5 x = 0.6946
α1 = 0.5 y = 0.5128 δ α3

α1
= .234

α3 = α4 = 0.3 fm = 472.405
τ = 0.4 rm = 299.744 δ + α1−α3

1−α1
= 0.79

δ = 0.39
p = 0.5

Since δ + β ≤ F ≤ δ + α1−α3
1−α1

and δ α3
α1
≤ R ≤ δ − δ2, we

predict only one mixed equilibrium:

f 1 = 481 .4875

r1 = 275 .9875

f 3 = 493 .25

f 4 = 425

r3 = 324 .75

r4 = 325

Firm controls Firm does not control

Reg.

controls

Reg. does

not control

f 2 = 451 .75

r2 = 275 .75

r1 = 275 .9875 r3 = 324 .75

r4 = 325r2 = 275 .75

4. Conclusions

The application of our results would theoretically be to
inform policy makers of the likely outcomes of their deci-
sions. The regulator gets to choose the game that will be
played, and then gets to make the first move. If there is
a preferred outcome, especially if it is preferred on the ba-
sis of non-monetary goals, then the policy may be set in
such a way as to make that outcome more likely. Here the
non-monetary preferred outcome is usually that of less pol-
lution, since loss of life and extinction of species are difficult
to account for in a payoff matrix.

Our results can instruct policy makers at several levels.
In an ideal situation, the corporate tax rate and Pigouvian
taxes can be adjusted, as in Remarks 1 and 2, to force the
game outcomes to have equilibria with low pollution. The
real world is however, not usually ideal. Often the policy
makers are held financially accountable first, and morally
accountable second. Of course we are being tongue-in-cheek.
It is not simple to separate fiscal efficiency from public wel-
fare.

When the penalties and taxes are fixed by prior factors
(perhaps political), it may at first appear that the regula-
tor faces an impossible choice between a financially inferior
strategy, and a strategy that sacrifices safety or biodiversity
for maximizing tax revenue. However, the strength of our
analysis is that it can often uncover win-win options: mixed
strategies that allow the regulator to choose a policy that is
at an equilibrium with less pollution than either pure strat-
egy; and higher tax revenue and after-tax profits than in the
worst-case pure equilibria for the respective players. In the
examples where there were three equilibria, the combined
payoffs fm + rm were larger than either f2 + r2 or f3 + r3.

Of course “win-win” is a philosophically presumptuous
claim. For context we point out that our examples which
have three equilibria are reminiscent of the classic game of
chicken. The two players can either swerve or barrel on
straight ahead towards collision. The pure equilibria are
when only one player swerves. In our games swerving cor-
responds to controlling pollution. Thus the interpretation
in which x and y are frequencies of control is not so palat-
able; one head-on crash is more than the public can risk.
We prefer the application in which x and y are the relative
strengths of two filters, applied in tandem.
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Importantly, in these mixed equilibria the firm cannot
gain from altering its amount of prevention. Thus the gov-
ernment can set its own subsidy of pollution prevention at
the mixed equilibria rate. Then it can hope that the firm
will follow suit rationally, or at least encourage the firm to
pay its share on the basis that it has nothing to lose by doing
so. In fact, the good public relations gained by the firm will
then be a cost-free benefit.

Finally, by examining four cases of penalty policy we
showed that setting the rates of a variable Pigouvian tax
can change the game. First the different subcases have dif-
ferent numbers of possible simultaneous equilibria. Then in
Remarks 3, 4 and 5 we point out how the different cases lead
to different likelihoods of either or both players controlling
pollution.

Further study is warranted by the cases in which there is
only one mixed strategy. It has been conjectured that these
may harbor semi-antagonistic equilibrium points, as defined
in [2]. Those are points for which neither player’s payoff
is optimized, but for which the environment may reap the
benefit. We are thankful to the author of [2] for pointing
out this possibility.

Even more future directions of this research might include
taking into account more strategic choices for both firm and
government. For instance, cases when lobbying by the firm
can affect the tax and penalty rates have been studied in [3].
Also it has been argued that subsidies can be counterproduc-
tive if they lead to many more polluting firms entering the
market, e.g. in [5]. The model we study here should extend
to those more complex situations, where it could again be
used to answer the question: when does compromise prevent
more pollution?
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