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Abstract

Biologists use phylogenetic trees, or phylogenies, to visualize genetic
relatedness of organisms. Phylogenetic trees can be used at any scales–
from determining the population structure of a single species, to display-
ing all life on planet Earth–under the assumption of a branching tree-like
structure. This chapter introduces the key concept of using a distance
matrix (created from genetic data) in order to infer phylogenies via the
principle of Balanced Minimum Evolution (BME). Then we focus on find-
ing the phylogeny via linear programming techniques, especially branch-
and-bound on relaxations of the BME polytope. Related methods for
finding a BME phylogeny include edge-walking with tree moves (as in the
program FastMe) and Neighbor Joining, a popular greedy algorithm for
approximating the BME phylogeny. The skills used to infer and inter-
pret a phylogenetic tree can be useful to many biological fields, including
genetics and molecular biology, as well as applied research ranging from
conservation of endangered species to tracking the spread of infectious
diseases.

1 Introduction
A phylogenetic tree (or phylogeny) is a representation of the genetic relation-
ships between organisms, species or genes. Mathematically, phylogenetic trees
can be thought of as partially labeled graphs — a collection of items connected
by branching edges. Phylogenies are commonly used in biology to explore the
evolution, biological diversity and relatedness of species, organisms and genes.
Phylogenetic trees allow us to postulate about similar adaptations and shared
genes between organisms. Determining phylogenetic relationships can be a use-
ful step in identifying the genetic basis of an observed trait between closely
related species or individuals.
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1.1 Phylogenetic reconstructions and interpretation
Phylogenetic reconstructions can be inferred from morphological or genetic data.
For the purposes of this chapter, we focus on the genetic data used in molecular
phylogenetics. The genome carries the complete genetic material of an organ-
ism. This information is found in the deoxyribonucleic acid (DNA), which is
transcribed into ribonucleic acid (RNA) where it can be processed into amino
acids to form proteins in a process called translation. DNA is typically repre-
sented as a chain of nucleotide bases: adenine (A), guanine (G), thymine (T)
and cytosine (C). In RNA, thymine is replaced by uracil (U). A nucleotide se-
quence is thus represented by a continuous chain of repeating letters (A, C,
G and T/U). Some RNA strands encode proteins, meaning their sequence of
nucleotide bases code for amino acids. There are 20 unique amino acids that,
when strung together in a continuous chain, form unique proteins.

To construct a phylogenetic tree, we must first identify and align our se-
quences so they can be compared. These data could be DNA or RNA nucleotide
sequences or an amino acid sequence. There are many programs and approaches
available that will automatically align multiple sequences (see [SLV09]). For
our purposes, we assume that we have a well-defined alignment of multiple
sequences and explore phylogenetic reconstructions using distance based ap-
proaches, specifically the Balanced Minimum Evolution (BME) and branch and
bound methods.

Distance based approaches to phylogenetic inference are one class of methods
used to approximate a tree to a set of molecular data and can accommodate very
large data sets. These methods use a matrix of genetic distances which estimate
the genetic dissimilarity between organisms. The distance matrix is calculated
by applying a model of evolution to the multisequence alignment and can be
done in a variety of molecular phylogenetic programs (see [SLV09] for a thorough
explanation). The BME method constructs a phylogenetic tree by minimizing
a quantity called the tree length. In the case of error-free data, the tree and
the corresponding tree length is uniquely determined by the pairwise distances,
the dissimilarity matrix. The BME method yields an unrooted tree, without
edge lengths. If wanted, edge lengths can be found by solving or approximating
solutions to linear equations. Finally a root can be chosen or added based on
external evidence. In this chapter, we pair the BME method with a branch and
bound method. Branch and bound methodology is typically used to optimize
the search for the most accurate phylogenetic reconstruction and we provide a
demonstration of how branch and bound may be applied to the BME problem.

Phylogenetic trees contain a wealth of information about the evolution, bio-
logical diversity and relatedness of the species, organisms or genes represented
in the tree. Each branch of the tree will end in a tip that represents the terminal
or extant taxa that were used to construct the tree. The tips of phylogenetic
tree branches are also called leaves. The internal branching points of the tree,
called nodes, represent instances where genetic differentiation from the ancestral
population has occurred. See Figure 1 for a simple example. The lengths of the
branches of a phylogenetic tree can be calibrated to estimate evolutionary time.
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The branch length is then indicative of the amount of genetic change between
organisms. For a more detailed description of the biological interpretations of
evolutionary events represented in phylogenies, see [Bau08].

Extant taxa
 

A  B      C D 

E 

F 

G 

Root 

Figure 1: Terminology and interpretation of phylogenetic trees. The root
of a tree represents the ancestral population from which all the extant
taxa are derived. The nodes in the body of the tree are branching points
where differentiation (speciation) from the ancestral population has oc-
curred. A monophyletic group, or clade, is marked with a dashed line. A
clade with only two leaves is also known as a cherry. An example of a
non-monophyletic group would include taxa B and C and their common
ancestor nodes, E and F.

With recent technological and computing advances, researchers now have ac-
cess to and have begun to utilize larger and larger genetic datasets in their phylo-
genetic reconstructions–into the thousands of sequences ([MSM10] [CDvM+06]).
Phylogenies produced from these large datasets have the potential to lead to
more biological questions. For example, Figure 2 shows three of the current
theories of angiosperm (flowering plant) evolution.

The grouping of Chloranthus and Magnolia in Figure 2 (a) is called a clade,
specifically a clade with two leaves which is referred to as a cherry. A clade
will include the ancestral lineage and all the descendants of that ancestor and is
also called a monophyletic group. The monophyly seen with Amborella and the
plants is disputed by other studies that have shown Amborella and Nymphaeales
(water lilies) are sisters and are equally distant from the rest of the flowering
plants (Figure2 (c); [BCM+00]). The inconsistencies shown between the trees
in Figure 2 demonstrate a demand for new and innovative approaches to phylo-
genetic reconstructions as a way to approximate the true evolutionary history
of organisms. The work presented in this chapter illustrates a new approach to
the distance-based BME method of phylogenetic reconstructions.
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Figure 2: Phylogenetic reconstructions for angiosperms (flowering plants),
for each of which the gymnosperms contain the root ancestor. Top-to-
bottom these are based on results in [GDGC+15], [Mor11], and [BCM+00].
It is in [GDGC+15] that the fossil Montsechia appears, but we add it here
to extant Ceratophyllum for comparison.
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Figure 3: Alternate tree diagrams, or cladograms, for the tree in Figure 2
(b). The second diagram is the unrooted version.

1.1.1 Exercise

It is often helpful to present a phylogeny using cladograms (see Figure 1.1.1).
Redraw parts (a) and (c) of Figure 2 to get the alternate versions: cladogram
and unrooted tree as seen in Figure 3.

1.2 Balanced Minimum Evolution
Utilizing molecular data collected from DNA, RNA and amino acids allows us
to measure dissimilarities between pairs of taxa. These dissimilarities are based
on the observed differences between DNA sequences, compared positionwise,
after an attempt to align them as well as possible. The dissimilarities are rep-
resented as nonnegative real numbers. If the pairwise dissimilarities obey the
triangle inequality (reviewed in the next section), then they may be interpreted
as distances in a metric space whose points are the taxa.

Distance-based methods are a class of techniques that use this information
to select the best tree to represent a set of aligned molecular data. The BME
method, which we consider in this chapter, finds the optimal tree by solving
a minimization problem designed to pick out the unique tree whose geometry
is able to yield those distances (or the tree which comes closest, in a sense to
be made precise). An advantage of the BME method is that it is known to be
statistically consistent. This means that as we obtain more information related
to the dissimilarity of species which indeed obey a tree structure, then our
solution approaches the true, unique, tree representing that data. Furthermore,
the correct tree can be recovered even in instances of missing or corrupted data,
provided that the error is within bounds.

Various methods for obtaining solutions have been proposed over the course
of several decades (See [Cat07] for a survey of current methods). In [SN87a],
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Saitou and Nei suggested an algorithm, known as Neighbor-Joining (NJ), which
runs in polynomial time. Neighbor joining has been popular for years because
of its efficiency and observed relative accuracy–it was a big improvement over
earlier methods. It was not understood for some time exactly what NJ works
to optimize.

In 2000, Pauplin [Pau00] demonstrated a new method for calculating the
total length of a phylogenetic tree with positive valued lengths assigned to each
edge. The length of a tree is simply the sum of its edge lengths. However, Pau-
plin’s method instead begins with the dissimilarities (distances between leaves)
which are each found by adding the edge lengths on the path between a pair
of leaves. This list of distances, is treated as a vector, the distance vector. A
second characteristic vector is found by considering only the numbers of edges
traversed in each path from leaf to leaf, ignoring the edge lengths. We show how
to calculate both vectors in the next section. Finally, the total length of the tree
is recovered by finding the dot product of these two vectors. The value of this
roundabout approach is that it uses both the typical given data (dissimilarities)
and the combinatorial branching structure of the tree. If any alternative tree
(with a different branching structure) is substituted, the calculated length is in-
correct. In fact, the incorrect value will be greater than the correct value. Now
assume the branching structure is unknown, but that we do know the distance
vector. Then by minimizing the dot product, seen as a linear functional, we can
recover the correct branching structure. This is the BME method. In [GS06]
the authors show that NJ is actually a greedy algorithm for BME method: it
seeks to minimize that same total length by making local choices. Recently, it
was discovered that minimizing the tree length over the set of phylogenetic trees
is equivalent to minimizing over a geometric object known as the Balanced Min-
imum Evolution Polytope [HHY11a]. Thus, the problem can be reformulated in
terms of mathematical linear programming.

1.3 Definitions and Notation
To formulate our problem, we must introduce some definitions. We define S =
[n] = {1, . . . , n} to be a list of distinct taxa that we wish to compare. Each
element in S is a natural number, which corresponds to an individual taxon.
Let the distance vector d with

(
n
2

)
components be given, where each entry dij is

nonnegative and represents the so-called dissimilarity between taxa i and j, for
each pair {i, j} ⊂ S. This vector is obtained from our aligned molecular data.
It is also sometimes described as a symmetric matrix, with 0’s on the diagonal.
If the numbers dij obey the triangle inequality dxy + dyz ≥ dxz for all triples
x, y, z then we say they are distances in a metric. If they obey the stronger
4-point condition that:

dxy + dwz ≤ max(dxw + dyz, dyw + dxz)

for all quadruples x, y, z, w then we say that the distance matrix is additive.
For any additive d there is a phylogenetic tree with edge weights that realizes

6



the values of dij as the sums of lengths on the path from leaf i to leaf j. In
what follows we will use t to refer to an arbitrary phylogenetic tree without
edge weights and T to refer to a phylogenetic tree with edge weights. The tree
t without edge weights is often referred to as the tree topology shared by any
weighted T created by adding edge weights to t.

Mathematically speaking, a phylogenetic tree on [n] is a cycle-free graph
with leaves labeled by the elements of [n]. The non-leaf vertices are not labeled,
and we exclude vertices of degree 2. A weighted phylogenetic tree has non-
negative real numbers assigned to its edges. Let Tn be the set of all binary
phylogenetic trees on [n] without edge weights. Then, for each tree t ∈ Tn, there
is a corresponding characteristic vector x(t) with

(
n
2

)
components xij(t) for each

pair {i, j} ⊂ S. We define

xij(t) = 2n−2−lij(t), (1)

where lij(t) is the number of internal nodes (degree-3 vertices) in the path
connecting i and j in t. The additional factor of 2n−2 is used to rescale Pauplin’s
original coordinates to be positive integers [Pau00].

We say a vector b has a lexicographic ordering if the entries bij are expressed
in the form

b =
(
b12, b13, . . . , b1n, b23, b24, . . . , b2n, . . . , b(n−1)n

)
.

We use a lexicographic ordering of the entries for vectors d and x.
Here is an example of a phylogenetic tree for S = [6], together with its

characteristic vector.

3

1

4

2
6

5

(4, 2, 4, 2, 4, 1, 8, 1, 2, 1, 8, 4, 1, 2, 4)

t  =

x(t)  =

For simplicity, we choose to use a vector to express dissimilarity, rather than
a matrix. The dissimilarity matrixD contains zeros along the main diagonal and
is symmetric because dij = dji. Our vector d arises naturally from D in a simple
way: It consists of rows from the upper triangular elements in D, excluding the
main diagonal. If we are provided a binary tree T with non-negative weights
on the edges, then we can calculate d by adding the weights on each of the
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edges connecting the path from i to j in T . Once we have calculated d, we can
determine the rescaled length of T using the path-length functional L : Tn −→ R
defined by

L(T ) =
∑
i,j
i<j

dij2
n−2−lij(T ). (2)

Here lij does not depend on the edge lengths, just on the path-lengths. As
shown by Pauplin [Pau00], L(T ) is equal to 2n−2L(T ) where the length L(T ) is
the sum of the edge lengths of T. Using our definition in (1), we can rewrite (2)
as

L(T ) = dT · x(T ). (3)

Here is an example of a weighted phylogenetic tree for S = [6], together with
its length and rescaled length. Note that the latter can be calculated using the
dot product, and that x(T ) = x(t) from the above example.

3

1

4

2
6

5

2

1.5 1

2

3.2
1

1
3

2.1

(5, 7.2, 4.1, 6.7, 6.2, 10.2, 5.1, 9.7, 9.2, 9.3, 3.5, 5, 8.8, 8.3, 4.5)d  =

T =

T

L(T) = 16.8

L(T) = 16(16.8) = 268.8

Since T is its own BME tree, we are left to compute a single dot product. How-
ever, our task here is to find the BME tree represented by an arbitrary distance
vector d using data that is potentially missing or corrupted. Therefore, we must
extend this definition to handle any tree t ∈ Tn using a slight modification of
(3). The penultimate form of our functional is

L(t) = d · x(t). (4)

The ultimate form will come later, when we allow x to range over a region of
Euclidean space. The primary difference between (3) and (4) is that the latter
does not assume that the dissimilarity data comes from a known phylogeny. For
instance, we might have

d = (5, 7, 4, 7, 6, 10.2, 5.1, 9.7, 9.2, 9.3, 3.5, 5, 8.8, 8.3, 4.5)
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Notice that this given vector d does not obey the 4-point condition, since
d1,5 + d2,3 > max(d1,2 + d3,5, d1,3 + d2,5). Thus there does not exist a tree
with edge weights realizing this vector exactly, even though it is just a (partly)
rounded version of the example dT from above.

However, in the case for which d = dT for T with positive edge lengths, the
tree topology is unique and the functional L(t) will be minimized precisely when
the minimizer t∗ has the same topology as T. Thus minimizing this dot product
provides a consistent way to reconstruct the tree which realizes the distance vec-
tor. Moreover, it has been shown that the method is statistically consistent : for
any sequence of vectors dn which converges to dT , the corresponding sequence
of minimizers t∗n approaches the topology of T.

Using (1), we can equivalently describe the structure of a tree t by its unique
vector representation x(t). This allows us to minimize (4) over x(t), with the
minimizer, now, being x(t∗). Observe that our rescaling will not affect the solu-
tion obtained through the minimization procedure. In general, the minimizer is
only unique provided it does not contain edge weights that are identically equal
to zero. In the latter case, we will have a finite collection of trees that minimize
L(t) simultaneously.

Note that vectors are written several ways in this chapter. We use (1, 2, 3) in
the text, but for Matlab input and output this becomes [1 2 3]. For Polymake
input and output we see [1, 1, 2, 3] where an extra coordinate of ‘1’ is placed
in the first position. Polymake is a free software package for the analysis and
computation of polytopes, see [GJ00].

1.3.1 Exercise

Find the BME tree, with n = 4, given the distance vector d = (6, 8, 9, 12, 7, 15).
Proceed as follows:

1. Draw all possible unrooted trees t on n = 4 taxa and determine the vector
x(t) for each tree.

2. Compute the dot products d · x(t) and select the tree corresponding to
the minimal dot product.

3. Then reconstruct the 5 edge lengths by solving 6 linear equations simul-
taneously. In general there will be

(
n
2

)
equations using the 2n− 3 variable

edge lengths. Note that if the original d is not additive, then the solution
may not exist–and then we may be forced to choose approximate solutions.

Luckily the tree topology is the crucial ingredient we seek. Also note that in
this example, the naive approach would choose the smallest distance, 6, as the
first cherry. This is known as the long-branch problem, and in the solution you
will see that one branch has an outsize length.
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2 Polytopes and Relaxations

2.1 What is a polytope?
A polytope is the convex hull of finitely many points in a Euclidean space. The
definition of convex hull is as follows: A set Y is said to be convex if for any
points a, b ∈ Y , every point on the straight line segment joining them is also
in Y . The convex hull of a set of points X in Euclidean space is the smallest
convex set containing X. Colloquially speaking, one way to define a polytope
is as a finite set of points which have been shrink wrapped. Some examples
of polytopes include polygons, cubes, tetrahedrons, pyramids, and hypercubes,
also known as tesseracts. Note that a point in Euclidean space is equivalently
seen as a vector from the origin, and vice versa.

Another geometric definition of a polytope utilizes half-spaces, which are
given by linear inequalities. If we take finitely many linear equalities such that
the set of points which obey all of them is bounded, that set of points is a poly-
tope. We can say that the polytope is the intersection of half-spaces described
by those inequalities. Any polytope given by a convex hull can also be given in
this manner. Here is an example:

0            1          21/2

4.5

2

3

1

(1/2, 9/2)

-2/5

y    5x + 2 y    -3x + 6y    0

        Conv({(-2/5, 0), (2, 0), (1/2, 9/2)})

= {(x, y) |           ;                    ;                     }

If we cannot remove a point v without changing the convex hull itself, we
will call v a vertex of the polytope. For example, each corner of a triangle is a
vertex. If there exists a linear inequality such that every point in the polytope
satisfies it, we call the set of points that satisfy it exactly a face of the polytope.
Each face of a polytope is itself a polytope. For example, all of the corners and
edges of an octagon are faces of the octagon. The dimension of a polytope is the
dimension of the smallest Euclidean space which could contain it. For example,
the dimension of a pentagon is 2.

A facet of a polytope is a face with dimension one less than that of the
polytope. For example, a square is a facet of a cube. A polytope can also
be described combinatorially as a partially ordered set, or more specifically a
lattice. Each polytope is made up of smaller polytopes– its faces– ordered by
containment. The poset of faces does not record the geometric information, such
as lengths and volumes, or location of points in space. Instead, it records the
combinatorial type of the polytope, and we often refer to this as the polytope
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itself, up to equivalence.
Many polytopes occur naturally in a sequence. For easy examples, consider

the simplices. This sequence begins with the degenerate cases of a point and a
line segment, then the triangle and the tetrahedron. In general, as we increase
the dimension by one, the n-dimensional simplex is the convex hull of n + 1
points in general position, such as the n + 1 unit vectors of a standard basis.
Another example of a sequence is the n-dimensional cubes. Our polytopes of
interest occur in a similar sequence, as described in the next section, but they
skip dimensions.

2.2 The BME Polytope
There are exactly (2n − 5)!! trees that belong to Tn (See Table 1 for details).
Minimizing our functional (4) over these trees would require us to construct the
characteristic vector x(t) for each and every tree in Tn, and then find its dot
product with the given distance vector. A useful result from [HHY11a] states
that minimizing over the set of trees in Tn is equivalent to minimizing over the
convex hull of {x(t) | t ∈ Tn}. We define the BME Polytope, hereafter denoted
as BME(n), to be the convex hull: Conv({x(t) | t ∈ Tn}). For n = 3, since
there is only one tree with three leaves, BME(3) is the single point (1, 1, 1) in
R3. For n = 4, the polytope BME(4) is the triangle in R6 pictured in Figure 4.

1

2

3

4

1

2

3

4

1

2 3

4

(2, 1, 1, 1, 1, 2)

(1, 2, 1, 1, 2, 1) (1, 1, 2, 2, 1, 1)

Figure 4: The balanced minimum evolution polytope for n = 4 is the convex
hull of three points in R6. The vertices x(t) on the right are shown for the
respective trees on the left (from [FKS16a]).

Describing the BME polytope allows us to reformulate the BME problem
as a linear programming problem where both the objective function and the
constraint functions are linear. In this context, the BME polytope represents
the feasible region that is described by these inequalities. Next we will mention
some of the facet inequalities that are shared by BME polytopes of all dimension.

Proposition 1 (Caterpillar Facets and Cherry Faces). For every i, j ∈ S, with
i 6= j,

1 ≤ xij ≤ 2n−3. (5)
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We will begin with an example to motivate the terminology. If n = 5, then
choosing the pair {1, 2} gives the inequalities x1,2 ≥ 1 and x1,2 ≤ 4. These are
obeyed by all points in BME(5), specifically by all the vertices. For vertices
corresponding to trees with the cherry {1, 2} the equality x1,2 = 4 holds. For
vertices corresponding to caterpillar trees with the two cherries containing {1, i}
and {2, k} the equality x1,2 = 1 holds.

number dim. vertices facets facet inequalities number of number of
of of Pn of Pn of Pn (classification) facets vertices

species in facet
3 0 1 0 - - -
4 2 3 3 xab ≥ 1 3 2

xab + xbc − xac ≤ 2 3 2
5 5 15 52 xab ≥ 1 10 6

(caterpillar)
xab + xbc − xac ≤ 4 30 6
(intersecting-cherry)

xab + xbc + xcd + xdf + xfa ≤ 13 12 5
(cyclic ordering)

6 9 105 90262 xab ≥ 1 15 24
(caterpillar)

xab + xbc − xac ≤ 8 60 30
(intersecting-cherry)
xab + xbc + xac ≤ 16 10 9

(3, 3)-split

n
(
n
2

)
− n (2n− 5)!! ? xab ≥ 1

(
n
2

)
(n− 2)!

(caterpillar)
xab + xbc − xac ≤ 2n−3

(
n
2

)
(n− 2) 2(2n− 7)!!

(intersecting-cherry)
xab + xbc + xac ≤ 2n−2

(
n
3

)
3(2n− 9)!!

(m, 3)-split, m > 3∑
i,j∈S1

xij ≤ (k − 1)2n−3 2n−1 −
(
n
2

)
(2m− 3)!!

(m, k)-split, −n− 1 ×(2k − 3)!!
m > 2, k > 2

Table 1: Technical statistics for the BME polytopes, as seen in [FKS16b].
The first four columns are found in [Hug08] and [HHY11b]. Our new and
recent results from [FKS16b] are in the last 3 columns. The inequalities
are given for any a, b, c, · · · ∈ [n]. Note that for n = 4 the three facets are
described twice: our inequalities are redundant.
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1

2 4

5

3

x(t) = (1, 4, 1, 2, 1, 4, 2, 1, 2, 2)

t = 

1

3 5

4

2

x(t) = (4, 1, 2, 1, 1, 2, 1, 2, 4, 2)

t = 

This inequality provides both a lower and upper bound on each of the decision
variables used in the model. These inequalities suffice to guarantee that our
polytope is bounded, since it is contained within the hypercube

[
1, 2n−3

](n2), in(
n
2

)
-dimensional space. The right-hand side of the inequality follows immedi-

ately using the definition of xij and noting that every leaf must be separated
using at least one internal node. These constraints are called the cherry faces.
Similarly, on the left-hand side, the caterpillar facets follow because the distance
between any two leaves in a tree is at most n− 2 internal nodes away.

Proposition 2 (Kraft equalities). Let i, j ∈ S. Then for every i ∈ S,∑
j∈S−{i}

xij = 2n−2. (6)

The Kraft Equality is a necessary condition for a path length sequence to rep-
resent a phylogeny. These equalities are commonly encountered in information
theory, specifically in Huffman trees, which are rooted binary trees used to repre-
sent symbols in a coding alphabet. Interestingly, Huffman trees can be described
using a path length sequence [Ryt04]. Therefore, we can think of a phylogeny
as a Huffman tree encoded in a binary alphabet using the taxa as symbols in
the code [CLPSG12, FOR17]. We do not provide a proof of this inequality here,
but one can derive this property using an inductive edge collapsing argument
and an appropriate relabeling of the taxa.

Next we see a type of facet inequality that captures sets of trees which can
have either of two cherries, where one leaf label is shared by the two. For n = 5,
here is the set of trees that have either the cherry {3, 4} or the cherry {3, 5}.
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3 4
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2 3
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1
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Proposition 3 (Intersecting-Cherry Facets). Let i, j, k ∈ S be distinct. Then,
for any collection of phylogenetic trees with either {i, j} or {j, k} as cherries,
we have

xij + xjk − xik ≤ 2n−3. (7)

This inequality will become strict when a tree contains neither {i, j} or {j, k} as
cherries. The proof that this inequality forms a facet of BME(n) is in Theorem
4.7 of [FKS16a].

13



The size of the collections of these types of facets, as well as the number
of vertices each type contains, is displayed in Table 2. The next kind of facets
has the fastest growing collection size, as n increases. A split of the set [n] is a
partition into two parts. A phylogenetic tree on [n] displays a certain split if it
has clades whose leaves are the two parts of that split.

Proposition 4 (Split Facets). Consider π = {S1, S2}, a partition of S. Let
|S1| = k ≥ 3 and |S2| = m ≥ 3. Then for i, j ∈ S1∑

i<j

xij ≤ (k − 1)2n−3. (8)

For convenience, we will refer to types of splits using the cardinality of their
partitions, e.g., we say a tree exhibits a (k,m)-split. This inequality allows us
to have some control on the positioning of the taxa within a subgraph of a tree
t. The split inequality achieves equality for any tree that displays the split,
and is a strict inequality for all others. In [FKS16b], the authors proved that
this inequality, indeed, forms a facet of BME(n). They also showed that the
number of these facets grows on the order of O(2n), which will be relevant to
our discussion on the performance of our proposed algorithm in later sections.

Software such as Polymake [GJ00] is useful for finding the structure of
high-dimensional polytopes. For an example, we will show the input for the
2-dimensional case. From Figure 4 above, we have the three vertices (counter-
clockwise from the top, from the three possible trees). In Polymake we input
these vertices to model the polytope as follows (note the required extra initial
coordinate 1):

polytope> $points=new Matrix
([[1,2,1,1,1,1,2],[1,1,2,1,1,2,1],[1,1,1,2,2,1,1]]);

polytope> $p=new Polytope(POINTS=>$points);

This creates a model of the polytope, and now we can output facts about it.

polytope> print $p->F VECTOR;

This outputs 3 3, which simply tells us there are 3 vertices (the first number)
and 3 edges in the convex hull. Also useful is:

polytope> print $p->VERTICES IN FACETS;

which outputs:
{1 2}
{0 2}
{0 1}
These three pairs tell us which sets of vertices appear in a facet–here the vertices
are numbered 0,1,2 in the order they were input, so each pair makes a facet
(edge). The inequalities that create these edges geometrically are found in
Table 1, under n = 4. We see that one option is to use the caterpillar inequalities
involving leaf 1, which are respectively x12 ≥ 1, x13 ≥ 1, and x14 ge1.
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2.2.1 Exercise

Find the vertices for the 5-dimensional BME polytope. Use software (such as
Polymake) to find the structure of the three types of 4-dimensional facets with
their inequalities for the 5-dimensional BME polytope. We will start the latter
process by giving the answer for a cyclic ordering facet, as described above in
Table 1 for n = 5.

Letting a = 1, b = 2, c = 3, d = 4, f = 5, the five trees which keep those
five leaves in that cyclic order are the ones with vertices as follows:

(4, 2, 1, 1, 2, 1, 1, 2, 2, 4), (2, 2, 2, 2, 1, 4, 1, 1, 4, 1), (4, 1, 1, 2, 1, 1, 2, 4, 2, 2),

(1, 1, 2, 4, 4, 2, 1, 2, 1, 2), (2, 1, 1, 4, 2, 2, 2, 4, 1, 1).

They correspond to the trees in the following picture, starting at the top and
going counterclockwise, ending with the central tree (figure from [FKS16a]):

a

b

a

b

a

b

a

b

a

b

c

df

c

df

c

df

c

df

c

df

xab + xbc + xcd + xdf + xfa ≤ 13

The facet formed by these trees is 4-dimensional, since the polytope is 5-
dimensional for n = 5. Since their are only 5 vertices in the facet, the only
polytope it an be is a 4-dimensional simplex, that is, a pyramid on a tetrahedral
base, which we picture above using a Schlegel diagram.

2.3 The Splitohedron
Obtaining a complete combinatorial or geometric description of a polytope is
often difficult. By complete description, we mean that for every facet of the
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polytope, we would like to have a corresponding facet inequality. Furthermore,
collections of facets for polytopes are often exponential or factorial in size, which
are impractical for mathematical programming formulations. The BME prob-
lem has long been known to be NP-hard. In [FJ12] it is shown that even certain
approximate solutions to the BME problem are NP-hard, unless P=NP. This
suggests that a complete description of the polytope is unlikely. To partly cir-
cumvent this, we can consider a relaxation of the BME polytope. A relaxation
of a polytope P is a larger polytope R containing P . The relaxation R is
specifically any polytope that can be given by a subset of a list of inequali-
ties which define P . We can develop relaxations of the BME polytope using
various combinations of the known facet inequalities. To this end, we propose
several inequalities used to construct a relaxation of BME(n). We refer to the
relaxations as the splitohedra, Sp(n).

Classification Size of Collection Vertices in Faces

Caterpillar Facets
(
n
2

)
(n− 2)!

Cherry Faces
(
n
2

)
(2n− 7)!!

Intersecting Cherry Facets
(
n
2

)
(n− 2) 2(2n− 7)!!

Kraft Equalities n -

Split-Facets 2n−1 −
(
n
2

)
− n− 1 (2m− 3)!!(2k − 3)!!

Table 2: We provide some statistics for the inequalities used in our re-
laxation, Sp(n), based on [FKS16b]. Notice that the facets of first three
classes of inequalities grow polynomially in n, while the facets for (k,m)-
splits grow exponentially in n. The Kraft Equalities appear in all faces of
the polytope, so they trivially contain all of the vertices.

We define our relaxation of the BME Polytope as the intersection of half-
spaces given by Propositions 1-4. This operation forms a new polytope, which
we call the Splitohedron, denoted as Sp(n). Some properties regarding faces of
Sp(n) are provided in Table 2. Note that the cherry face inequalities, that is,
the upper bounds xij ≤ 2n−3, are actually redundant. This can be seen since
each upper bound is also implied by the pair of intersecting-cherry inequalities
based on (1) the intersecting cherries {i, j} and {j, k} and (2) the intersecting
cherries {i, j} and {i, k}. Adding the latter two inequalities:

xij + xjk − xik ≤ 2n−3

+ xij + xik − xjk ≤ 2n−3

2xij ≤ 2(2n−3)
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yields the former upper bound. However, keeping the cherry inequalities can
be a programming convenience. The first nontrivial polytope Sp(4) is the same
triangle as BME(4). After that, although the facets are fewer, there are more
vertices than in BME(n). From computer calculations using Polymake, [GJ00],
we see that Sp(5) has 27 vertices and Sp(6) has 2335. We now state a theorem
obtained in [FKS16b] relating the vertices of Sp(n) and BME(n).

Theorem 1. Let t be an unrooted phylogenetic tree with n taxa. If t has at least
dn4 e cherries, then x(t) is a vertex in both BME(n) and Sp(n). For n ≤ 11, the
statement holds regardless of the number of cherries.

Theorem 1 allows us to estimate when we begin losing information under the
relaxation. As long as n ≤ 11, the Splitohedron will contain all the vertices of
BME(n). Otherwise, we begin losing some of the vertices of the BME Polytope.

2.3.1 Exercise

Find the vertices for the 2-dimensional and 5-dimensional splitohedra.

3 Optimizing with Linear Programming
The linearity of the half-spaces defining the Splitohedron and the underlying
linear objective function suggest that we can cast our optimization problem
as a linear program. Recall that, in equation (4) we defined the path-length
functional that describes the length of a tree t ∈ T . As previously noted, we
seek a minimizer x(t?) of this functional, but we delayed defining the region
containing admissible solutions. Now that we have defined our relaxation of the
BME polytope, we can use it as the feasible region for our linear programming
model. Our model is as follows.

Formulation (Discrete Integer Linear Programming).

argmin
x

d · x

subject to:∑
j;j 6=i

xij = 2n−2, ∀i ∈ S (9)

xij + xjk − xik ≤ 2n−3, distinct i, j, k ∈ S, (10)∑
i,j∈S1
i<j

xij ≤ (m− 1)2n−3, m = |S1| ≥ 3, n−m ≥ 3, (11)

1 ≤ xij ≤ 2n−3, ∀i, j ∈ S, i 6= j (12)
xij ∈ {2y : y ∈ Z≥0}, i, j ∈ S, i 6= j (13)

Here we use argmin because we want to return the argument x that minimizes
the rescaled path length L(x). This ultimate form of our functional considers x
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as a general vector without the dependence on t. This is a direct consequence
of our relaxation, which introduces non-tree realizable vectors into the feasible
region. Notice that (9)-(12) are the Kraft Equalities, Intersecting Cherry Facets,
Split Facets, and the Caterpillar and Cherry Faces, respectively. These are the
same inequalities we used to define our polytope Sp(n). The last constraint,
(13), states that each of the variables is a power of 2. This allows us to avoid
encountering many of the potential solutions that might not belong to the BME
Polytope that are present in our relaxation. It is this constraint which makes
the problem difficult.

In terms of computation, the system above is not a polynomial sized formula-
tion. The number of inequalities in constraint (11) grows according to the power
set and is, therefore, O(2n). While this is not an issue for smaller problems,
where n ≤ 11, larger problems consist of many inequalities and the numeri-
cal linear algebra slows the run time considerably. Therefore, larger problems
require some simplifications to obtain solutions within a reasonable run time.

3.0.1 Exercise

Repeat Exercise 1.3.1 using the inequalities for the polytope BME(3), by hand
or with your favorite linear programming software.

3.1 Discrete Integer Linear Programming: The Branch
and Bound Algorithm

The problem of finding the vertex of the BME polytope which corresponds to
the tree that minimizes our product belongs to a class of problems called discrete
integer linear programs. That is the primary reason that we scaled the values in
the solution vector to become integer powers of two. One of the most common
techniques for solving this class of problems is called branch and bound. This
process is recursive, breaking the original problem into subproblems, which are
easier to solve. The recursive structure of this process can be visualized as
traversing a rooted binary tree, where each node represents an individual linear
programming problem.

To begin, the discrete valued constraints on the decision variables are re-
laxed. This allows us to utilize linear programming algorithms where the de-
cision variables admit a continuum of values. The initial linear programming
problem that results from this relaxation is called the root LP. Computing its
solution allows us to determine the feasibility of the original problem. If the
solution to the root LP meets our original restrictions for the decision variables,
then the branch and bound routine terminates. Otherwise, we select a variable
according to a branching rule and begin the branching process. The branching
rule tells us how to divide the solution space, which results in a set of subprob-
lems, which represent new nodes in our branch and bound tree. After separately
solving each of these problems, a selection strategy is used to determine which
nodes to explore in the branch and bound tree. If a node is not explored, we
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say the node was fathomed or pruned. Once a node is selected for exploration,
the process is repeated.

The inequalities used in the creation of individual problems, along the path,
are maintained throughout the search. Once a feasible solution satisfying the
constraints on the decision variables is obtained, we can update the global bound
on the objective and use it to prune subproblems, which provide a less optimal
objective value. We are permitted to prune subproblems in this manner, even if
the discrete constraints on the decision variables are not satisfied. We call the
best, current solution the incumbent solution. This pruning process allows us
to eliminate significant portions of the search space, which effectively reduces
the algorithm’s running time. Repeatedly applying this process allows us to
eventually obtain the optimal solution to our original discrete programming
problem.

To summarize, the steps of the general branch and bound approach are as
follows:

1. Run the LP solver (such as the simplex method) on our (relaxed) polytope
with our given objective function to get “answer zero:” vector x0 and
objective function value p0.

2. If x0 has all coordinates powers of 2, then we say it is complete, and it is
our final answer.

3. If x0 is not complete, then we create some new LP problems 1A, 1B , etc.
by adding new inequalities one at a time, just enough to force an offending
coordinate away from its disallowed value.

4. We solve each of these (as long as they are still feasible, that is, as long
as the intersection of the inequalities is non-empty) to get answers x1A,
x1B , p1A, p1B , . . . etc.

5. For each new answer we check whether it is complete. If complete, check
if its objective function value is better than any seen so far: if it is better
then save that solution as the current incumbent solution. If not complete
then decide whether it merits further branching into more new problems;
that is, whether it has an objective function value better than the current
best value given by a complete answer. If it is not better, then we prune
this branch–that is, we do not branch again. Otherwise we return to step
(3).

6. The process ends when no more branching is indicated; and the final
answer is the optimal one from among the complete answers found.

For an example, let us solve the following problem: Maximize p = 4x + 2y
subject to

y ≥ 0

y ≤ 5x+ 2
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y ≤ −3x+ 6

Require all coordinates of answer x = (x, y) to be in the set {0, 1, 10}.

0            1          21/2

4.5

2

p = 11

3

1

4.5

2

3 p = 10

1

4.5

2

3

p = 4

1

4.5

2

3

1

p = 8.6

5/3

4.5

2

3

1
p = 2

4.5

2

3

1

5/3

p = 6

x    1x    1

y    1
y    10

Infeasible

y    1
y    10

x    1 x    10

x = (0.5, 4.5)

x = (1, 3)

Infeasible

x = (5/3, 1)
x = (0, 1)

x = (1, 1)

2B Infeasible

1A 1B

2A 2C 2D Complete

3A  Complete 3B

x = (0, 2)

0            1          2

0            1          20            1          2

0            1          2 0            1          2

The uppermost box shows the 0-level problem with its solution. Then the
branching is performed in alphabetic order on the variables x and y. Of course
this is an artificial example, in which the solution is easily found and the in-
equalities are not very helpful! Larger examples are needed to see that the
method is efficient. In this example, some of the branching paths end in an
infeasible problem and some end in a complete solution. This example does
not have a path that ends in a pruned solution. Next, we give as an exercise a
similar problem that does have an opportunity to prune. It also has the same
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requirement on discrete coordinate values as our actual BME problem.

3.1.1 Exercise

Perform branch and bound. Maximize p = 6.75x+ 5y subject to

−x ≤ 0

−y ≤ 0

y ≤ 10

x ≤ 8.3

79x+ 18y ≤ 693.5

Require all coordinates of the answer (x, y) to be powers of 2. When branch-
ing, take the first alphabetical coordinate value that is not a power of 2 and
introduce two branches that add the inequalities ≤ and ≥ the nearest powers
of 2 smaller and larger than that coordinate value, respectively. This of course
is an arbitrary choice of strategy for branching. In the next section we will talk
about more tailored strategies for our specific BME problem.

3.2 Recursive Structure: Branch Selection Strategy and
Fixing Values.

In the next few sections, we will discuss the specific strategies we found while
producing our algorithm for the BME problem. The strategies and the pseu-
docode are presented here and the actual code is made freely available at
http://www.math.uakron.edu/~sf34/hedra.htm#splito. However, they are
not guaranteed as trustworthy for any purpose, and are intended only as tools
for investigation and discovery.

Designing a branch and bound algorithm is an open-ended decision process.
One has a large amount of flexibility among choices for selection strategies and
branching rules available for implementation. For example, if our problem re-
quired that variables belong to {0, 1}, then we could chose to branch on variables
with the “most fractional” entry. For a vector x, this is the entry i satisfying

argmin
i
{|xi − 0.5|}. (14)

In our problem, since we require that variables be powers of 2, we could modify
(14) so that we chose the entry whose value is “farthest” from any adjoining
power of 2. The expression for this is slightly more complex and takes the form

argmax
i

{
min{|xi − 2blog2 xic|, |xi − 2dlog2 xie|}

}
. (15)

The complexity of this selection strategy arises naturally from the structure of
powers of 2. As the numbers in the set become larger, the distance between
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adjoining elements also increases. We can also think of (15) as being a bottom-
up selection strategy, where the algorithm focuses on finding the cherries first.
If this strategy leads to multiple maximizers, then we can choose any of them to
use as a branching variable. Our strategy simply chooses the first maximizing
index. Of course, many other good selection strategies may exist, perhaps based
on machine-learning and examining statistical relationships between selection
variables and the corresponding “gain” in the objective function (See for example
[AKM05]).

Once we have selected the variable to branch on, we must determine how to
subdivide the feasible region. This effect is accomplished by bounding functions,
which introduce new inequalities to the feasible region in an effort to remove the
unwanted values. Suppose we have identified the branching variable xj . During
the branching phase, we generate two new bounds

xj ≤ 2blog2 (xj)c (16)

xj ≥ 2dlog2 (xj)e, (17)

which are maintained in the constraint sets {A1,b1} and {A2,b2}, respectively.
Each constraint set is associated with a particular subproblem, and is passed re-
cursively to the branch and bound algorithm, where both feasibility and validity
are further examined. If the problem is infeasible, then the node is fathomed.
If the problem is feasible and the solution has entries that are powers of 2, then
we check the value of the objective function. If it is less than the incumbent
solution (since we are minimizing), then the bound is updated. Once a valid
solution has been found, its bound can be used to prune suboptimal branches
in the tree.

We can also also introduce heuristic fixing. Heuristics, on a general level,
involve incorporating problem-dependent experimental information into an al-
gorithm to eliminate unlikely candidates in the branch and bound process and
promote faster convergence to the optimizer. If variables in the solution have
floating point values which are “close” to a power of 2 and remain stagnant dur-
ing the process, we could reduce round-off errors by fixing the values to their
closest power of 2. Therefore, given a tolerance ε > 0 and a vector x, we select
a candidate for fixing if an entry satisfies

argmin
i
|xi − 2[log2 (xi)]| < ε. (18)

Here, [x] denotes the nearest integer function. Suppose now that we have iden-
tified a candidate variable j that satisfies (18). Then we set

xj = 2[log2 (xj)] (19)

in the equality constraints {Aeq,beq}. This effectively eliminates the variable
xj as an unknown. We fix variables in two places: inside the main script,
after finding the root solution, and before branching. In the first instance, we
fix all cherries using equality constraints and adjust the upper bounds from
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2n−3 to 2n−4. The experimental observation here is that linear programming
solvers tend to find all cherries in the given problem after solving the root
LP. Therefore, it is deemed reasonable to fix their positions in the equality
constraints. In the second instance, we fix any variable according to (18) and
(19). Should multiple variables be eligible for fixing, we choose one closest
to its rounded value. This sort of secondary fixing is commonly referred to
as a Large Neighborhood Search (LNS) since it searches for solutions to the
underlying problems in a large neighborhood of the polytope, which contains
the face generated by our fixed entry. As we let ε → 0, the algorithm relies
less on fixing and performs similarly to pure branch and bound. The size of ε
controls how liberal we wish to be with fixing.

A noted downside of the LNS heuristic is that it sometimes can lead to in-
feasible situations along all branches of the branch and bound algorithm. Once
the algorithm encounters universal infeasibility, the process terminates. This
problem has been considered in strategies such as Relaxation Induced Neighbor-
hood Search (RINS) and Guided Dives, which use sophisticated back-tracking
processes to return to a feasible state. Authors in [DRLP05] develop these meth-
ods, exploring how each of them definea, searches, and diversifies neighborhoods
to improve incumbent solutions. In practice, such techniques have allowed for
fast, successful computation of often intractable optimization problems. Heuris-
tics, in the same regard as other aspects of branch and bound, require careful
experimentation. However, it should be noted that approaches utilizing heuris-
tics can no longer guarantee that the solution obtained is the true minimizer
(or maximizer) for the original problem.

3.2.1 Exercise

Suppose the current solution to a subproblem in the branch and bound algorithm
is: x = (2, 4, 3.25, 3.42, 2, 3.68, 1.33, 1, 8, 4, 2, 2, 4, 8, 1.5). Use the expression (15)
to determine the branching variable and write down the two bounds generated
by branching using (16) and (17).

3.3 Pseudocode for the Algorithm: PolySplit

Our branch and bound procedure consists of a main script to manage the entire
problem, and two separate branching algorithms embedded in the main file.
The purpose of the main file is to formally initialize the best current bound and
evaluate the feasibility of the root LP. Before the root LP is solved, the data
for the problem is collected. This data includes the given dissimilarity data d,
the sets of inequality and equality constraints, choices for parameters governing
run-time and termination, and a decision to apply the LNS heuristic. Once this
information has been collected, it is sent to the LP solver to identify the solution
for the root and determine feasibility. If the problem has been deemed feasible,
it is sent to a recursive branching function with updated constraints based on
whether or not a heuristic has been applied. We provide pseudocode for the
main algorithm in Figure 5.
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The algorithm decides to call a particular branching function depending on
whether or not we use a heuristic. If we choose to use the heuristic, the algorithm
finds cherries and fixes their positions in the constraints, which are then passed
as input to the branching function. It was observed in numerous test cases that
LP solvers could identify cherries immediately in the root LP and that they did
not change over the course of the process. Therefore, we chose to fix their values
in the solution vector.

The algorithms for the branching functions are similar with a slight modi-
fication in the heuristic based option. We provide a detailed outline in Figure
6. The branching functions first evaluate the solution of the LP at the current
node. If we are at the root node, then the problem is solved twice. This re-
dundancy is not an issue and merely serves to simplify our code. If the solution
at the current node is infeasible or the value of the objective function is worse
than our incumbent solution, then the node is pruned. Otherwise, the algorithm
checks the solution to see if it contains all powers of 2. If this holds, then the
solution becomes the new incumbent and we can use the value of the objective
function to prune suboptimal results later in the search. If we find that the so-
lution produced does not contain all powers of 2, then we branch on the current
solution. We can identify the branching variable, according to a devised rule
and then create the two subproblems. Each subproblem receives one of the new
inequalities (16) and (17), respectively. Finally, we pass the information for the
subproblems P1 and P2, recursively, to the branching function. Each subprob-
lem communicates with the other through the incumbent solution. Once the
branching produces suboptimal results, the algorithm terminates and reports
the solution to the main algorithm.

To modify the code present in Figure 6 to apply the heuristic, we need to
incorporate an additional parameter, which we call “maxiter0.” The algorithm
is designed to work with pure branch and bound until the number of iterations
reaches maxiter0. At this point, the algorithm has not found the solution,
so instead, we begin applying the heuristic, according to (18) and (19). This
process works in conjunction with pure branch and bound until we (1) reach the
solution, (2) encounter an infeasibility, or (3) reach maxiter1 and the algorithm
terminates. This adjustment is reflected in our code in Figure 7.

It is important to note that for our purposes, we use a single value for each
of the tolerances in our branching algorithms presented in Figures 6 and 7. In
principle, we could have defined different tolerances, say ε0, ε1, and ε2, asso-
ciated with the stopping criterion, branching variable selection, and the LNS
search, respectively. Another area to explore would be variations in the itera-
tions before the heuristic is applied. For instance, does the algorithm exhibit
better performance and solution quality when the heuristic is applied earlier?

Once the algorithm terminates, it is possible to draw the phylogenetic tree
simply by passing the solution to the distance function, which determines the
topological distances lij of the phylogenetic tree. Using our definition for xij
in (1) and inverting the exponential piece via logarithms, we obtain a formula
for the lij ’s in terms of the xij ’s. The ability to draw the tree is conditional on
the tree realizability of the solution x?. We have observed experimentally that
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the above algorithms seem to always yield a result that is realizable as a tree,
although a formal proof of this is yet to be complete.

Algorithm 1: The Discrete ILP Main Algorithm PolySplit
Require: Identification of minimizer x?

Input: d, A, b, Aeq, beq, lb, ub, n, maxiter0, maxiter1, ε, heuristic
Output: x?, L?, status
1: Initialization: set bound = +∞ and iter = 0
2: Solve the relaxation at the root node → x0, L0, status0
3: if status = infeasible then
4: Return x?, L? = ∅
5: else
6: if heuristic = 0 then
7: Call branch0 → x?,L?, status
8: else if heuristic = 1 then
9: Find all entries s.t. |x0i − 2n−3| < ε for i = 1, . . . ,

(
n
2

)
10: Fix positions and update Aeq,beq, ub
11: Call branch1 → x?,L?, status
12: end if
13: end if

Figure 5: Main algorithm PolySplit for the Discrete ILP problem.

3.3.1 Exercise

The Matlab code for PolySplit is available from the Encylopedia of Com-
binatorial Polytope Sequences, at www.math.uakron.edu/~sf34/hedra.htm#
splito. Sample input is given there as well, for instance the distance vector for
a tree with nine leaves:

d = (4, 5, 3, 2, 6, 7, 8, 8, 3, 3, 4, 4, 5, 6, 6, 4, 5, 3, 4, 5, 5, 3, 5, 6, 7, 7, 6, 7, 8, 8, 3, 4, 4, 3, 3, 2) .

Find the optimal tree using the code. The output will be the powers-of-2 vector.
Use it to redraw the tree. The Matlab files are also found in [San17], available
from etd.ohiolink.edu.
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Algorithm 2: PolySplit Branch0 Algorithm
Input: d, A, b, Aeq, beq, lb, ub, xt,Lt, ε, bound
Output: x̃, L̃, status, bb
1: Solve the relaxation at the current node → x0,L0, status0
2: if status0 = infeasible or L0 > bound then
3: Return input, bb ← bound
4: else
5: Compute E = max

i

{
min{|x0i − 2blog2 (x0i)c|, |x0i − 2dlog2 (x0i)e|}

}
6: if E < ε or iter > maxiter1 then
7: if L0 < bound then
8: x̃← x0, L̃ ← L0, bb ← L0

9: else
10: Return input, bb ← bound
11: end if
12: Return
13: end if
14: Select a branching variable x0j
15: Build subproblem P1 : Set x0j ≤ 2blog2 (x0j )c in {A,b} → {A1,b1}
16: Build subproblem P2 : Set x0j ≥ 2dlog2 (x0j )e in {A,b} → {A2,b2}
17: iter ← iter + 2
18: Call branching routine for P1 → x1,L1, status1, bound1
19: if bound1 < bound and status1 = feasible then
20: x̃← x1, L̃ ← L1, bound ← bound1, bb ← bound1, status ← status1
21: else
22: Return P1 input data, bb ← bound
23: end if
24: Call branching routine for P2 → x2,L2, bound2, status2
25: if bound2 < bound and status2 = feasible then
26: x̃← x2, L̃ ← L2, bb ← bound2, status ← status2
27: end if
28: end if

Figure 6: Branching algorithm for pure Branch and Bound.
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Algorithm 3: PolySplit Branch1 Algorithm
Input: d, A, b, Aeq, beq, lb, ub, xt,Lt, ε, bound
Output: x̃, L̃, status, bb
1: Solve the relaxation at the current node → x0,L0, status0
2: if status0 = infeasible or L0 > bound then
3: Return input, bb ← bound
4: else
5: Compute E = max

i

{
min{|x0i − 2blog2 (x0i)c|, |x0i − 2dlog2 (x0i)e|}

}
6: if E < ε or iter > maxiter1 then
7: if L0 < bound then
8: x̃← x0, L̃ ← L0, bb ← L0

9: else
10: Return input, bb ← bound
11: end if
12: Return
13: end if
14: if iter > maxiter0 then
15: Find an entry k = argmin

i
|x0i − 2[log2 (x0i)]| < ε for i = 1, . . . ,

(
n
2

)
16: Set x0k = 2[log2 (x0k)] and update Aeq,beq

17: end if
18: Select a branching variable x0j
19: Build subproblem P1 : Set x0j ≤ 2blog2 (x0j )c in {A,b} → {A1,b1}
20: Build subproblem P2 : Set x0j ≥ 2dlog2 (x0j )e in {A,b} → {A2,b2}
21: iter ← iter + 2
22: Call branching routine for P1 → x1,L1, status1, bound1
23: if bound1 < bound and status1 = feasible then
24: x̃← x1, L̃ ← L1, bound ← bound1, bb ← bound1, status ← status1
25: else
26: Return P1 input data, bb ← bound
27: end if
28: Call branching routine for P2 → x2,L2, bound2, status2
29: if bound2 < bound and status2 = feasible then
30: x̃← x2, L̃ ← L2, bb ← bound2, status ← status2
31: end if
32: end if

Figure 7: Branching algorithm using a LNS heuristic. Once we specify
a tolerance, the algorithm determines if a decision variable can be fixed
before branching.
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4 Neighbor Joining and Edge Walking
The most frequently used method for distance-based phylogeny reconstruction
is Neighbor Joining (NJ), developed in [SN87b]. As shown in [GS06], NJ is a
greedy algorithm for finding the balanced minimum evolution tree. However,
NJ loses accuracy quickly at the point of considering seven or eight taxa (leaves)
as seen in [EHPY08]. For eight taxa, the theoretical accuracy is between 69%
and 72% for trees with more than two cherries, but drops to 62% for caterpillar
trees. The conjecture in [EHPY08] is that the accuracy will continue to drop
quickly, especially for caterpillar trees with more taxa. Our algorithm, on the
other hand, experimentally shows 100% accuracy up to 11 taxa, even in the
caterpillar case, with and without noise.

4.1 NNI and SPR moves, and FastMe 2.0
In an ideal situation, where the entire polytope is known via its facet inequalities,
linear programming via the simplex method has a nice geometrical interpreta-
tion. The pivot moves and row reductions in the simplex method correspond to
moving from vertex to vertex of the polytope along edges–each time choosing
the edge which most improves the objective function.

In the non-ideal situation, working with a relaxation of the polytope is the
best we can do if we want to use the inequalities. If, alternatively, we know
some subset of the edges, we can attempt a solution that uses any known edge
in order to move from a current vertex to an adjacent vertex which improves
the objective. This requires having combinatorial knowledge of the edges–that
is, knowing how to find at least some of the adjacent phylogenetic trees to any
given tree.

The best current published improvement on NJ is the algorithm by Desper
and Gascuel known as FastMe2.0, [LDG15]. This is an improved version of the
original FastMe [DG02a], which piggy-backed on NJ by performing nearest-
neighbor interchanges (NNI) on the current tree candidate. The FastMe2.0
algorithm improves this by also doing subtree-prune-and-regraftings (SPR). As
shown in [HHY11b], both operations correspond to edges of the BME polytope.
There are many more edges in general. Thus, FastMe uses edge walking on
a subset of the edges of BME(n), which is essentially the bottom-up analog of
our top-down use of facet inequalities. In [DG02b] the FastMe algorithm is
shown to improve on NJ by between 3.5% and 7% for 24 taxa, and as much as
21.3% for 96 taxa. While it is difficult to make a conclusive statement without
further development of our PolySplit algorithm for greater numbers of taxa,
it appears that our algorithm has the potential to improve even more, based on
our 100% accuracy rate with up to 11 taxa. In order to test higher numbers, we
plan to develop heuristics for selectively decreasing the number of facets from
our list. The number of split facets, for instance, grows like 2n, so we need to
use dynamically chosen subsets of these facets in order to manage the run-time
for n > 12.
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5 Summary
There are many phylogenetic questions that remain unanswered in biology and
we have addressed only one method of tree reconstruction in this chapter. We
have, however, demonstrated a new algorithm for finding the balanced minimum
evolution tree. This approach, accompanied by the general introduction to the
branch and bound method of linear programming using the discrete integer set
of powers-of-two, can be used to explore these unanswered questions. We hope
that the approaches in this chapter will provide a new and exciting method of
phylogenetic reconstruction, capable of accounting for the very large datasets
biologists are able to generate.

Additionally, there are many other methods that can be used to approxi-
mate a phylogenetic tree. Maximum likelihood (ML) and Bayesian methods
are commonly used by biologists. ML methods assume a probabilistic model
of mutations and choose the tree with the maximum probability. These proba-
bilistic methods can be combined with BME: the ML method is used to build
the dissimilarity (distance) matrix and then BME is used to construct the tree.
Alternative linear programming approaches to BME, such as that in [CASP15],
have also been tested on large sets of taxa. A natural extension of the work
presented in this chapter would be to compare the various linear programming
methods to identify areas where the approaches could be combined to further
optimize reconstructions.
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6 Answers to exercises, worked exercises.

Answer to Exercise 1.1.1
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Alternate tree diagrams, or cladograms, and unrooted versions for the trees in
Figure 2 (a,c).

Answer to Exercise 1.3.1

Recall that the vector of distance is d = (6, 8, 9, 12, 7, 15) .
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So we choose the tree with minimal objective function value. After assigning
variables to the edges and solving the 6 equations (one for each entry in the the
distance vector) we get the original tree:
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(1, 2, 1, 1, 2, 1) 72
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solve

e + y + z = 6

e + w = 8

e + y + q = 9

w + y + z = 12

z + q = 7

w + y + q = 15

e 

w

y
z

q

d x(t).

Answer to Exercise 2.2.1

Find the vertices for the 5-dimensional BME polytope. Use software (such
as polymake) to find the structure of the three types of 4-dimensional facets
with their inequalities for the 5-dimensional BME polytope. Here are the
points, formatted for entry to polymake with the extra initial coordinate, 1.
(shell.polymake.org):
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shell.polymake.org


polytope > $points=new Matrix([[1,4,1,1,2,1,1,2,4,2,2],[1,4,2,1,1,2,1,1,2,2,4],
[1,4,1,2,1,1,2,1,2,4,2],[1,2,1,4,1,2,2,2,1,4,1],[1,2,2,2,2,1,4,1,1,4,1],
[1,1,4,1,2,1,4,2,1,2,2], [1,1,2,1,4,2,4,1,2,2,1],[1,2,1,1,4,2,2,2,4,1,1],
[1,1,1,2,4,4,2,1,2,1,2], [1,1,1,4,2,4,1,2,1,2,2],[1,2,2,2,2,4,1,1,1,1,4],
[1,2,4,1,1,2,2,2,1,1,4], [1,1,4,2,1,1,2,4,2,1,2],[1,1,2,4,1,2,1,4,2,2,1],
[1,2,2,2,2,1,1,4,4,1,1]]);

$p=new Polytope(POINTS=>$points); print $p->F_VECTOR;

The above command outputs:

15 105 250 210 52

Here are the three types of facets, with vertices labeled as in [FKS16a].

x12 ≥ 1

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2 3

4

5

1

2

3

4

5

1

2 3

4

5

32



xab+xbc−xac ≤ 4

d

f

b c

d

f

b

a

c

df

b a

c

d

f

b

a

c

d

f b

a

c

d

f

b

a

c

a

xab+xbc+xcd+xdf+xfa ≤ 13

a

b

a

b

a

b

a

b

a

b

c

df

c

df

c

df

c

df

c

df

33



Answer to Exercise 2.3.1

Find the vertices for the 2 and 5-dimensional splitohedra.
The vertices of the 2-dimensional splitohedron are the same as the vertices

for the 2-dimensional BME polytope. The only facets are the caterpillar and
intersecting cherry facets.

The vertices of the 5-dimensional splitohedron are found by entering the
caterpillar facet inequalities, intersecting-cherry facets, and cherry faces to poly-
make [GJ00]. The vertices output are as follows, where the highlighted vertices
are from the original BME polytope–note that they are all present. Recall that
polymake inserts an extra ‘1’ as first coordinate.

(1, 2, 1, 4, 2, 4, 1, 2, 2, 1)

(1, 2, 4, 1, 2, 1, 4, 2, 2, 1)

(1, 4, 2, 1, 1, 2, 4, 2, 1, 2)

(1, 1, 2, 4, 4, 2, 1, 2, 1, 2)

(1, 1, 4, 2, 4, 1, 2, 1, 2, 2)

(1, 4, 1, 2, 1, 4, 2, 1, 2, 2)

(2, 1, 4, 1, 2, 2, 2, 1, 4, 1)

(8/3, 4/3, 8/3, 4/3, 4/3, 4/3, 8/3, 8/3, 8/3, 4/3)

(2, 1, 1, 4, 2, 2, 2, 4, 1, 1)

(4/3, 4/3, 8/3, 8/3, 8/3, 8/3, 4/3, 4/3, 8/3, 4/3)

(4/3, 8/3, 4/3, 8/3, 8/3, 8/3, 4/3, 4/3, 4/3, 8/3)

(4, 1, 2, 1, 1, 2, 1, 2, 4, 2)

(4, 2, 1, 1, 2, 1, 1, 2, 2, 4)

(8/3, 4/3, 4/3, 8/3, 4/3, 8/3, 4/3, 8/3, 8/3, 4/3)

(2, 2, 2, 2, 1, 1, 4, 4, 1, 1)

(2, 2, 2, 2, 1, 4, 1, 1, 4, 1)

(4/3, 8/3, 8/3, 4/3, 8/3, 4/3, 8/3, 4/3, 4/3, 8/3)

(4/3, 8/3, 8/3, 4/3, 4/3, 8/3, 8/3, 4/3, 8/3, 4/3)

(4, 1, 1, 2, 1, 1, 2, 4, 2, 2)

(8/3, 4/3, 4/3, 8/3, 8/3, 4/3, 4/3, 8/3, 4/3, 8/3)

(8/3, 4/3, 8/3, 4/3, 8/3, 4/3, 4/3, 4/3, 8/3, 8/3)

(2, 2, 2, 2, 4, 1, 1, 1, 1, 4)

(8/3, 8/3, 4/3, 4/3, 4/3, 8/3, 4/3, 4/3, 8/3, 8/3)

(8/3, 8/3, 4/3, 4/3, 4/3, 4/3, 8/3, 8/3, 4/3, 8/3)

(2, 4, 1, 1, 2, 2, 2, 1, 1, 4)

(4/3, 4/3, 8/3, 8/3, 8/3, 4/3, 8/3, 8/3, 4/3, 4/3)

(4/3, 8/3, 4/3, 8/3, 4/3, 8/3, 8/3, 8/3, 4/3, 4/3)

Answer to Exercise 3.1.1

Perform branch and bound. Maximize p = 6.75x+ 5y subject to

−x ≤ 0

−y ≤ 0

y ≤ 10

x ≤ 8.3

79x+ 18y ≤ 693.5

Require all the coordinates of answer (x, y) to be powers of 2.
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Maximize p = 6.75x + 5y  subject to 

-x  <= 0 

-y <= 0 

y <= 10 

x <= 8.3 

79x + 18y <= 693.5      Require all coordinates of answer (x,y) to be powers of 2. 

Op!mal Solu!on:

p = 93.87; x = 6.5, y = 10
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Answer zero:                                p = 93.87; x = 6.5, y = 10 

 

Branches:                           x<=4                                             x>=8 

 

Maximize p = 6.75x + 5y  subject to 

-x  <= 0 

-y <= 0 

y <= 10 

x <= 8.3 

79x + 18y <= 693.5 

x <= 4 

Maximize p = 6.75x + 5y  subject to 

-x  <= 0 

-y <= 0 

y <= 10 

x <= 8.3 

79x + 18y <= 693.5 

x >= 8  

1A: Op!mal Solu!on: 

 p = 77; x = 4, y = 10 

1B: Op!mal Solu!on: 

 p = 71.08; x = 8, y = 3.417 
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Answer 1A:                                   p = 77; x = 4, y = 10 

 

Branches:                           y <= 8                                             y >= 16 

 

Maximize p = 6.75x + 5y  subject to 

-x  <= 0 

-y <= 0 

y <= 10 

x <= 8.3 

79x + 18y <= 693.5 

x <= 4 

y <= 8 

2B: Not feasible. 

2A: Op!mal Solu!on: 

 p = 67; x = 4, y = 8 

 

Complete solu!on. 
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Answer 1B:   p = 71.08; x = 8, y = 3.417 

 

Branches:                           y <= 2                                             y >= 4 

Maximize p = 6.75x + 5y  subject to 

-x  <= 0 

-y <= 0 

y <= 10 

x <= 8.3 

79x + 18y <= 693.5 

x >= 8 

y <= 2 

2D: Not feasible 

(x >= 8  and y >= 4).

 

2C: Op!mal Solu!on: 

p = 66.03; x = 8.3, y = 2 

 

 

66.03 < 67 (best  

complete solu!on) so: 

No further branching. 
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p = 93.87; x = 6.5, y = 10 

p = 77; x = 4, y = 10 p = 71.08; x = 8, y = 3.417 

p = 67; x = 4, y = 8 

Not feasible. 

p = 66.03; x = 8.3, y = 2 

No branching: pruned. 

Not feasible. 

x<=4                                             x>=8 

                y<=8              y>=16                          y<=2                                   y>=4 

The final answer is  p=67 at  x=4, y=8.

Notice that we simply chose to branch first on x this time, whenever there
was an option. That is, we explored the two subproblems created by adding
inequalities involving x. Try the problem again using branching first on y, and
note that the same answer will be achieved–but will require an extra level of
branching. This highlights the value of a good criterion for selecting the branch
variable.

Answer to Exercise 3.2.1

Given the current solution:
x = (2, 4, 3.25, 3.42, 2, 3.68, 1.33, 1, 8, 4, 2, 2, 4, 8, 1.5), use the expression (15)

to determine the branching variable and write down the two bounds generated
by branching using (16) and (17).

Finding the distances from these values to the closest power of two in each
case gives this vector of distances:

(0, 0, 0.75, 0.58, 0, 0.32, 0.33, 0, 0, 0, 0, 0, 0, 0, 0.5) .

The maximum entry is 0.75, so the branching variable is the third variable, x1,4
(referring to leaves 1 and 4 of the 6 total leaves). Thus, the new bounds are
respectively x1,4 ≥ 4 and x1,4 ≤ 2.

Answer to Exercise 3.3.1

The output vector is x(t) = [ 16 8 32 64 4 2 1 1 32 32 16 16 8 4 4 16 8 32 16
8 8 32 8 4 2 2 4 2 1 1 32 16 16 32 32 64 ]. Your tree will have two cherries, one
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for leaves 1 and 5 (drawn on the left), the other for leaves 8 and 9 (drawn on
the right). The other leaves will be ordered 4,2,3,6,7 between the cherries from
left to right.
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