
1. Statement of Work: Chaos and Crystals:
Student Research opportunities.

1.1. Objectives and Significance. In some ways
pure mathematical research is not very different from
any other sort of scientific research. It consists of con-
ducting experiments, observing patterns of cause and
effect, and testing predictions made based upon those
observations. With mathematics, however, there is a
fourth required step of logical proof. Another dif-
ference is that the objects of study are abstract–you
can’t touch them–and even the rules of behavior for
those objects are chosen arbitrarily. Experiments in
mathematics are actually calculations, all on paper.

However, once a concept and its rules (together
called a theory) become the subject of many exper-
iments and proven patterns, concrete examples are
often found in the physical world of real objects and
real rules (physical, chemical, biological, economical)
that correspond nearly perfectly to that abstract the-
ory. Then the patterns proven by the mathematicians
can be used (together with observed physical laws) to
help predict what the outcome of a physical experi-
ment will be. This is called mathematical modeling.
The amazing thing is that mathematical beauty and
utility so often coincide. A theory that is applicable
often turns out to be elegant, and vice versa.

In 2003 a group of material scientists led by Jack
Douglas of the National Institute of Standards and
Technology observed for the first time certain features
of the strange way in which a crystal grows. They
studied both self similar and chaotic crystals.

Self similarity of an object is demonstrated by the
ability to zoom in on a part only to see the same pic-
ture as when viewing the whole. You can sometimes
find this kind of symmetry in the grocery store in
the art on a carton label, where a smiling mascot is
pictured holding the very same carton, which in turn
bears a picture of a miniature mascot holding a tiny
carton, and so on. The branches of some crystals
exhibit the familiar self-similarity of ferns and pine
trees, where a branch has the same form as the whole
tree.

Under slightly different conditions crystal branch-
ing becomes chaotic; more like the growth of frost on
a windowpane, or like seaweed. When mathemati-
cians speak of chaos, they do not mean random be-
havior. Rather they refer to a completely determined
pattern of events, but one that becomes more and
more complex over time, so that there is no shortcut
to predicting its outcome. Imagine dropping a tea-
spoon of purple dye into a plate of warm water. All
the initial variables such as temperature and speed

of the dye will determine the swirling pattern you
observe. However, there is no quick formula for cal-
culating the shape of the swirl after an hour. This is
quite different from the case of calculating the path
of a rocket to the moon, for instance, since we can
predict that flight almost perfectly.

Ferreiro, Douglas, Warren and Karim made nearly
continuous observations as their snowflake-like struc-
tures formed and branched out in a solution, and then
measured each with great precision. Immediately
they noticed several key facts. The first was that at
certain temperatures the usual regular increase in size
of the crystal became a pulsating, rhythmic growth.
The researchers made several guesses at the cause of
this pulsation but the state of knowledge about the
driving forces here is incomplete. Upon even more de-

Figure 1. Oscillating crystal growth.

tailed inspections the crystal investigators were able
to pinpoint another oscillation. The first growth vari-
able which they had already measured was the radial
length from the center of the crystal to the tip of a
main arm of the crystal. Now they extended their ap-
proach to the thickness of an arm of the crystal, mea-
suring the length from the main arm axis to the tip
of one of its sub-branches. Interestingly, this growth
measurement oscillated with the same period as the
radius, but was perfectly out of phase with the radius.
In other words, the radius and the arm thickness take
turns growing, one after the other.

Figure 2. Out of phase.

In 2007 the principal investigator (S. Forcey) dis-
covered a new set of ideas in pure mathematics which
bears remarkable similarity to some of the observed
characteristics of crystals, both self similar and chaotic.
The research being proposed here is the mathemati-
cal development of the new theory, as well as inves-
tigation into the possibility of applications to crystal
growth.
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Our primary objective is to thoroughly research
and publish results about the mathematical theory
involved in these applications, in preparation for a
federal grant effort. Two main avenues of pure math-
ematics will be further developed if this proposal is
funded. They are: A) research into the abstract
properties of a foundational family of mathematical
theories called categories of Young diagrams; and B)
research into classification of a second level of theo-
ries called operads built upon that foundation. These
terms will be defined shortly. Then these pure math-
ematical results will be applied to the modeling of
crystal growth. Some of this work has already been
done by the principal investigator, presented at vari-
ous conferences and published in a collaborative pa-
per.

Our secondary objective is to engage undergrad-
uate math majors and masters degree candidates in
this area of research. It is elementary enough to al-
low students to quickly participate in the actual re-
search, designing and conducting experiments, look-
ing for patterns in the collected data, and helping to
formulate and prove conjectures. The principal inves-
tigator has directed three masters theses and three
senior research projects. Two of those theses each
resulted in collaboratively published papers. Two of
the masters theses and one of the senior projects were
in this precise area, and the others in closely related
topics. The third thesis, in the area of research pro-
posed here, is currently in the process of becoming
a publication. Also the senior project most recently
completed in this area is being extended further by
the student, with intention of publication. The future
funding requested of the NSF will include tuition and
stipend money for students.

1.2. Plan and Methods A: Structure. The math-
ematical objects we plan to study are combinatorial
in nature. This means that they are made of sim-
ple building blocks put together according to simple
rules. Here the building blocks will be cubes of vari-
ous dimension as illustrated in Figure 3. We will al-

Figure 3. Segment, square, cube, hypercube.

low squares or cubes to be stacked in columns and
then several columns to be placed together. The
placement rule for squares is that the columns must

get shorter from left to right. The result forms what
is called a Young diagram. Here are a couple of ex-
amples:

A = and B =

Two diagrams can be added together in several ways,
all described as “combining two stacks of boxes.” In
the 2-dimensional case we let ⊗1 denote horizontal
stacking, or adding the lengths of the rows of two di-
agrams. We let ⊗2 denote vertical stacking, or adding
the heights of columns. If A and B are as above then:

A⊗1 B = and A⊗2 B =

Next we describe “vertical and horizontal multiplica-
tion,” denoted �1 and �2. These both begin by pack-
ing each box of diagram B with a copy of A. Then
the two kinds of multiplication are the two ways of
collapsing all the boxes to form a new Young diagram
(horizontally then vertically or vice versa). If

A = and B = ...then here is the packing:

A A

A

A

=

and so:

A �1 B =


⊗2

⊗2


⊗1 =

and

A �2 B =

(
⊗1

)
⊗2

⊗2

= .

The current state of knowledge about the mathe-
matical structures embodied by the various ways of
combining stacks of boxes includes many unknowns.
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Some of the structures we will be looking for are semi-
groups, rigs, rig categories, iterated monoidal cate-
gories, and globular monoidal categories. The de-
tailed definitions of all these structures are not given
here; rather we point out that the value of looking
for the structures is that there are already theorems
about them that will be of use in applications. We
will explain a little of the next to last term in the list.
The iterated monoidal structure has to do with how
the products interact. For instance, when starting
with 4 diagrams we can always get a higher stack of
boxes by combining horizontally first and then verti-
cally. We say one Young diagram is less than another
if its first column is shorter than the other’s. If the
first few pairs of columns are the same height in each
diagram then the first pair of unequal columns is used
to decide which diagram is greater. Let four Young
diagrams be as follow:

A = B = C = D =

Then the fact that (A ⊗2 B) ⊗1 (C ⊗2 D) ≤ (A ⊗1

C)⊗2 (B ⊗1 D) appears as follows:

≤

Figure 4 shows this same interchange inequality
but with colors to indicate how it came about. Higher

Figure 4. Interchange.

dimensions are also described in our first paper. It
is shown that the category of n-dimensional Young
diagrams with stacking products in each dimension
constitutes an n-fold monoidal category. The struc-
ture of the multiplications of 2-d Young diagrams is
described in a Masters thesis which is also to be pre-
pared for publication as part of the project time-line.

1.3. Plan and Methods B: Growth. The second
focus area of the pure math is on recursively grow-
ing sequences of Young diagrams, known as oper-
ads. Given any Young diagram B we can construct a
unique sequence of growing diagrams that is minimal

in each term with respect to ordering of the diagrams.
By minimal we mean that the principle which deter-
mines each of the later terms in succession is that of
choosing the minimal next term out of all possible
such terms.

1.1. Definition. The 2-fold operad in the category
of Young diagrams generated by a Young diagram B
is denoted by CB and defined as follows: CB(1) = 0
and CB(2) = B. Each successive term is defined to be
the maximum of all the products of prior terms which
compose to the term in question; for n > 2 and over∑

ji = n:

CB(n) = max{CB(k)⊗1 (CB(j1)⊗2 · · · ⊗2 CB(jk))}.

Here are the first few terms of the operad thus
generated by B = .

0, , , , , , , , . . .

Notice that the growth of the first column is periodic–
it grows by a single box at every other step. The
growth of the number of boxes in the remaining columns
all to the right of the first one is also periodic, but
precisely out of phase with the first column’s growth.
This matches the growth pattern of a crystal.

In fact, it is easy to find example sequences which
do even better at precisely modeling a given crystal.
The first step is to simplify the problem by consid-
ering Young diagrams with only one column. This
is a simple enough problem to introduce directly to
undergraduates. They can program it and then de-
sign and run experiments by choosing various start-
ing sequences and computing their long term behav-
ior. In Figure 5 we show how a given experimental
run is nearly the same as a sinusoidal model of the
radial growth in a crystal. There is in fact very lit-

Figure 5. Crystal models: Sinu-
soidal vs operad.

tle known about these sequences. Some of them are
easily reduced to a simple “shortcut” formula. The
main open question which made up both the content
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of the experimentation module of our Research Ex-
perience class and one student’s senior project was
indeed: just when is a shortcut possible?

Even less is known about the sequences which are
generated by a starting sequence of k Young dia-
grams. These are where the behavior of the sequence
can approach chaos. For example, if the starting se-
quence is 0, , then the sequence proceeds like

this:

0, , , , , ,

, , , . . .

Notice that the first column still grows linearly, but
the other columns grow with ever more complicated
patterns. The overall mass, or number of blocks in
each term, appears to grow chaotically:

0, 2, 2, 6, 6, 6, 8, 10, 8, 14, 12, 14, 14, 16, . . . .

The theoretical side of our research will include
classifying sequences based upon their starting terms,
into those with various shortcut formulas and those
displaying varieties of chaos.

In chaotic situations, such as the growth of some
crystals, we often turn to computer simulations to
attempt to guess the future. One purpose of our dia-
gram sequences is to serve as building blocks in such
a simulation. We plan to experiment with combina-
tions of Young diagrams to make virtual crystals, and
try to match these to actual crystal growth.

Another use of high performance computing will
be in the theoretical research. To work towards clas-
sifying sequence behavior based upon starting terms,

we will need to do extensive mathematical experimen-
tation. The calculation of many terms in a sequence
of Young diagrams is highly recursive, and programs
already written to do this job usually run for longer
than is desirable. Students can participate in every
stage of this process–helping to design experiments,
writing faster programs to run the experiments, and
analyzing results. Faster computers would of course
also be of assistance, and so this project would bene-
fit from the realization of the supercomputing center
currently being planned as a joint e�ort between TSU
and IBM.

Since the growth is in multiple dimensions, it sug-
gests applications to studies of allometric measure-
ments. This refers to multiple characteristics of a
system which grow in tandem. These measurements
are often used in biological sciences to try to predict
values of one characteristic from others, such as tree
height from trunk diameter, or skeletal mass from to-
tal body mass. There are also potential applications
to networks, where the growth of diameter or linking
distance of a network is related logarithmically to the
growth in number of nodes.

The multiplications of Young diagrams also sup-
port operads. These sequences however, grow expo-
nentially rather than linearly. Again there is much
theoretical work to be done in classifying these se-
quences. There is also the opportunity to look for
applications to real world exponential growth.
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