
1. Statement of Work: The Geometry of
Organic Chemistry: Student Research

1.1. Objectives and Significance. In 1998 a group
of biochemists led by R. Lahana began work on a new
drug intended for suppressing the immune system.
They started by considering the 64 billion possible
ways of putting together 7 in a row of 35 different
amino acids. Rather than educated guessing, they
used a virtual library of the structures that could be
formed from those 35 building blocks. This means
that the computer was programmed to list the pos-
sibilities in order based on shared structural char-
acteristics in what is known as a combinatorial li-
brary. “Combinatorial” describes objects that are
constructed from basic building blocks according to
specified rules. The searchers were able to screen
out unlikely candidates and narrow the list to “only”
279,936 critically bioactive choices. Further computer
searches winnowed the field down to 26 finalists. The
winning chemical, that is, the one predicted to be
most active, indeed proved in tests to be about 100
times more potent than the current lead compound.

Modern rational drug designers (and chemists in
general) rely more and more upon mathematical meth-
ods for organizing the options present in the cre-
ation of new molecules. This proposal is for research
within a developing area of pure mathematics called
geometric combinatorics, which combines combina-
torial questions with geometrical constructions. This
research will have significant direct applications to
mathematical chemistry.

For example: we plan to study the polyhexes, which
consist of groups of a certain number of hexagons
which share at least one side with another in the
group. Three hexagons can be arranged in three ways
as in Figure 1.

Figure 1. 3-cell polyhexes.

But these arrangements look very familiar to an or-
ganic chemist, since they are the pictures of polycyclic
benzenoid hydrocarbons. This name refers to the way
that carbon often occurs in a molecule as a hexago-
nal ring of six atoms. One of these rings alone is the
molecule benzene, C6H6. There has been much re-
cent research into the enumeration of hydrocarbons.
The state of knowledge here is that it is still unknown
how to calculate the number of possible hydrocarbons

of a given size. Many partial results have been discov-
ered. Enumeration of hydrocarbons is closely related
to purely mathematical constructions like the poly-
hexes. Especially so when we restrict our attention
to special polyhexes, such as the tree-like ones with a
chosen “root” edge. Figure 2 shows the five of these
with 2 or fewer hexagons, including the one with zero
hexagons.

Figure 2. ≤ 2-cell polyhexes.

Since the method of study is geometry, the re-
searcher will not only be counting and listing the
number of ways a construction might turn out, but
also geometrical ways in which the possible outcomes
are related–the big picture. The mathematical prin-
ciples we plan to focus on involve special shapes: 2-
dimensional polygons, 3-dimensional polyhedra, and
4-dimensional polytopes. Recall that dimension can
be defined as the number of coordinates needed to de-
scribe a point. In fact, polytopes can be dimension n
for any whole number n. Figure 3 shows some familiar
polytopes. The 4-d hypercube is least familiar, and

Figure 3. Segment, square, cube, hypercube.

we must note that the picture is only an approxima-
tion. Notice the pattern however; the cube is made
of 2 squares (front and back) with corners connected,
and the hypercube is made of 2 cubes (outer and
inner) again with corresponding corners connected.
The pattern continues for higher dimensions, but is
more and more difficult to draw. All of these shapes,
however, have corners (technically vertices) and sides
(facets) just as in a cut diamond. Our overall goal
is to discover how to arrange a family of combinato-
rial structures at the vertices in such a way that the
facets take on meaning.

The applications include finding useful geometric
arrangements of the list of hydrocarbons. If collec-
tions of molecules could be arranged around facets of
a polytope then there might be revealed interesting
insights into the properties of those molecules and
their relationships. Imagine that a new molecule is a
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good anticancer agent or AIDS fighter, but also has
toxic side effects. Knowing the mathematical struc-
ture of a related family of molecules could allow re-
searchers to make good choices when searching for
near neighbors of their molecule which keep its life-
saving properties and avoid the toxicity.

This knowledge should also accelerate the com-
puter processes of building and searching libraries of
molecules. The number of facets of the polytopes we
are planning to study grows much more slowly than
the number of vertices. If the facets had meaning
in terms of the chemical properties of the molecules,
then the search process could be sped by screening for
entire groups of molecules that share a facet. Even
better, perhaps only certain facets need be repre-
sented in the library. This would help in the building
stage, which can be the most time consuming.

Another advantage is that the polytope can be
thought of as a solid in space, made of all its inte-
rior points rather than just the vertices. This can
lead to the solution of problems by use of continu-
ous optimization techniques. By this we mean that
a property such as the conductivity of the molecule
we are building might be represented by a continu-
ous function on the polytope. Then we could find
a point (not necessarily a vertex) somewhere in the
solid polytope where that function value is at a maxi-
mum. Finally we could find the nearest vertex to that
point and predict its associated molecular structure
to realize maximum possible conductivity.

Chemistry is just one example of the potential
power of this new area of mathematical research. Any
sort of problem that is characterized by a large vari-
ety of possibly complex constructions based on simple
building blocks can be studied in this way. Other ex-
amples might be the placement of robotic network
nodes in an urban area, or the construction of the
genome of a protozoa, or the positioning of communi-
cation satellites or towers, or the inputs and outcomes
of an economic model.

Our primary objective is to thoroughly research
and publish results about the mathematical theory
involved in these applications, in preparation for a
federal grant effort. Two main avenues of pure math-
ematics will be further developed if this proposal is
funded. They are A) research into the properties of
an extended family of polytopes which are combina-
torially created; and B) research into ways that com-
binatorially generated objects can be organized by
those polytopes. Then this latter information will be
applied to the questions of mathematical chemistry.
Some of this work has already been done by the prin-
cipal investigator (S. Forcey), presented at various

conferences and submitted for publication. Collab-
orative efforts with researchers at other institutions
are also underway, and grant proposals may be joint
efforts.

Our secondary objective is to engage undergrad-
uate math majors and masters degree candidates in
this area of research. It is elementary enough to allow
students to quickly be able to participate in the ac-
tual research, designing and conducting experiments,
looking for patterns in the collected data, and helping
to formulate and prove conjectures. The principal in-
vestigator has directed three masters theses and three
senior research projects, one in this precise area and
the others in closely related topics. Two of those the-
ses became part of collaboratively published papers.
The future funding requested of the NSF will include
tuition and stipend money for students.

1.2. Plan and Methods A: Shapes and sizes.
When we speak of a combinatorial sequence we mean
a list of whole numbers each of which counts the ways
of building something given more and more building
blocks. For instance the sequence 1,1,3,10,36,137,...
gives the numbers of tree-like polyhexes with n hexagons.
Another sequence which begins 1,1,2,5,14,42,... gives
the numbers of binary trees with n leaves. For ex-
ample here are the binary trees with 1 or 2 leaves:

./
///// ���

. The trees with 3 or 4 leaves can be seen in Fig-

ure 4. This sequence of numbers of trees is known as
the Catalan numbers, and there is a very large list
of other interpretations of (or things you can count
with) that same sequence. The fact about the Cata-
lan numbers we want to focus on is the way in which
the trees can be organized as the vertices of a poly-
tope. For example in Figure 4 we show the trees with
4 leaves all arranged around the pentagon. The edges

Figure 4.

of this pentagon can represent simple branch moves
from one type of tree to another. The move is also
seen between the two trees with 3 leaves. When we
have five leaves, the trees arrange themselves to make
the first shape in Figure 5. It is called the 5th asso-
ciahedron , or K(5). The second shape in Figure 5
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Figure 5. K(5), J (4), CK(4) and N (3)

is called the 4th multiplihedron, or J (4). Its ver-
tices correspond to trees with paint applied to their
branches in various ways. The number of vertices was
discovered by the principal investigator to be derived
by a simple transformation of the Catalan numbers.
The other two shapes in Figure 5 are new inventions
of the principal investigator that correspond to fur-
ther sorts of combinatorics. The third shape is called
the 4th composihedron, or CK(4) and the last shape
is called the 3rd naturahedron, or N (3). First we
discuss further polytope research and then we will
return to the combinatorial interpretations.

In 2004 it was discovered by J.L. Loday that a
simple algorithm existed for finding the actual points
in space that are the vertices of the associahedron.
This algorithm was generalized to the multiplihedra
in a recently submitted paper of the principal inves-
tigator. Here is the actual geometric version of the
multiplihedron with some of the points labeled:
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Just turn the page 90 degrees clockwise to see the
picture of J (4) that is in Figure 4 of this paper.

S. Devadoss, a collaborator of the principal inves-
tigator, has also developed a generalization of the as-
sociahedra to be based upon any graph. Here a graph
is just any simple collection of points and connecting
lines. In collaboration, the graph multiplihedra for
any graph has been conceptualized. The principal
investigator has recently developed a way to find the
vertices in space that give the graph multiplihedra.

Figure 6 shows two of the new graph multiplihedra
that the principal investigator invented.

Figure 6. Graph multiplihedra.

The principal investigator has also developed re-
lated methods for finding the vertices in space for
the composihedra and graph composihedra. These
will also be described in forthcoming publications.

Among the open questions to be researched or as-
signed to students are: What are all the geometri-
cal properties of the various polytopes–centers, vol-
umes, symmetries, edge lengths and facet areas? Also
of interest are the combinatorial properties–number
of vertices, numbers of faces, numbers of triangula-
tions, and space tiling properties. When the numbers
of vertices of a particular sequence of polytopes are
known, then there is the opportunity to find other
(molecular) interpretations of those numbers which
the polytopes also help to organize.

1.3. Plan and Methods B: Sorting and count-
ing. It turns out that the nth composihedron has
the same number of vertices as the number of all the
rooted tree-like polyhexes with up to n cells. One of
the first questions we would like to answer is how the
polyhexes might be arranged according to the vertices
of CK(n), and what the edges and facet groupings of
the diagrams and their corresponding hydrocarbons
might mean. The same sort of question will also be
asked for many combinatorial problems involving the
other shapes in Figures 5 and 6.

In Figure 7 we show the rooted polyhexes from
Figure 2 arranged around a pentagon.

Figure 7. Polyhexes around a pen-
tagon: 1st guess.
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Figure 8. More pentagons.

This is only one possible arrangement. The ques-
tion is how to choose the “right” arrangement so that
it extends meaningfully to an arrangement around
the 3-dimensional composihedron of all 15 of the tree-
like polyhexes with 3 or fewer hexagons.

In fact, we want to find a recipe for putting the
polyhexes with n or fewer hexagons at the vertices of
the n-dimensional composihedron. The tools for at-
tacking the problem of finding a meaningful recipe in-
clude a list of known one-to-one complete correspon-
dences (bijections) between the polyhexes and other
combinatorial objects. Four of these other types of
objects are shown in Figure 8 with their correct ar-
rangements around pentagons: strings of words made
with a given alphabet, trees with a whole number as-
signed to each leaf, trees with extra long branches,
and branching polyhexes. Others with unknown ar-
rangements (in addition to the rooted tree-like poly-
hexes) include paths from point to point on a grid
and the symmetric polyhexes with 2 n + 1 hexagons.
By linking together the various bijections we hope to
find useful new ones. Another tool is to understand
the polytope edges as moves made between objects.

The number of di�erent polyhexes grows quickly as
the number of n hexagons increases. The sequence
of total numbers of tree-like rooted polyhexes starts
out 1,2,5,15,51,188... and then eventually grows as
quickly as 5 n . The sequence of composihedra however
has numbers o� acets which start out 0,2,5,10,19,36...
and that grow only as quickly as 2 n . This is impor-
tant to the possible applications of molecular library
searching, since it means that a facet-based search
has the potential to proceed much more quickly.
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