Trees and Polytopes
Stefan Forcey

Fibonacci tree \mathcal{F}.

Fibonacci tree \mathcal{F}.

\mathcal{F} is a leveled tree.

Leveled trees \mathcal{S}.

Leveled trees \mathcal{S}.

Leveled trees are permutations \mathcal{S}_{n}.

Q. What permutations are subtrees of \mathcal{F} ?

Binary trees \mathcal{B}.

Combed binary trees \mathcal{C}.

Permutohedron.

Tonks cellular projection.

Projection...

Projection...

Projection...

Species.

A species is a functor from Finite Sets to Finite Sets.

- Example: The species \mathcal{L} of Lists takes a set to linear orders of that set.

$$
\mathcal{L}(\{a, d, h\})=\{a<d<h, a<h<d, h<a<d, h<d<a, d<a<h, d<h<a\}
$$

- Example: The species \mathcal{B} of binary trees takes a set to trees with labeled leaves.

$$
\mathcal{B}(\{a, d, h\})=\left\{Y^{a d}, Y^{a} Y^{d}, \ldots, Y^{a d}, Y^{a}{ }^{d}, \ldots\right\}
$$

Species composition.

For a finite set U let $p(U)=$ the set of partitions of U.

$$
\mathrm{P}(U)=\left\{\left\{U_{1}, U_{2}, \ldots, U_{n}\right\} \mid U_{1} \sqcup \cdots \sqcup U_{n}=U\right\}
$$

We define the composition of two species:

$$
(\mathcal{G} \circ \mathcal{H})(U)=\bigsqcup_{\pi \in \mathrm{p}^{(}(U)} \mathcal{G}(\pi) \times \prod_{U_{i} \in \pi} \mathcal{H}\left(U_{i}\right)
$$

Familiar: also known as the cumulant formula, and the moment sequence of a random variable, and the domain for operad composition:

$$
\gamma: \mathcal{F} \circ \mathcal{F} \rightarrow \mathcal{F}
$$

Leveled tree of trees: indelible grafting.

Example:

$(\mathcal{S} \circ \mathcal{B})(\{a, b, c, d, e, f, g, h, i, j, k\})=$

$\mathcal{S} \circ \mathcal{B}$

$\mathcal{S} \circ \mathcal{B}$

$\mathcal{S} \circ \mathcal{B}$

$\mathcal{S} \circ \mathcal{B}$

Composing species of tree.

Composing species of tree.

A small commuting diamond

$$
C \circ \mathcal{B}
$$

A small commuting diamond

$C \circ \mathcal{B} \quad \mathcal{B} \circ \mathrm{C}$

$C \circ C$

A small commuting diamond

A small commuting diamond

$$
\frac{\text { combs }}{\text { comb }}
$$

A small commuting diamond

A small commuting diamond

A small commuting diamond

$$
\frac{\text { combs }}{\text { comb }}
$$

A small commuting diamond

A small commuting diamond

More polytopes.

More polytopes.

$\mathcal{S} \circ \mathcal{C}$

$\mathcal{S} \circ \mathcal{C}$

$\mathcal{S} \circ \mathcal{C}$

This polytope has been seen before!
Stellohedron $=$ Complete-graph-cubeahedron Number of vertices $=$

$$
\sum_{k=0}^{n} \frac{n!}{k!}
$$

Thanks!

