Trees and Polytopes Stefan Forcey

Fibonacci tree \mathcal{F} .

Fibonacci tree \mathcal{F} .

\mathcal{F} is a *leveled* tree.

Leveled trees \mathcal{S} .

Leveled trees are permutations S_n .

Combed binary trees C.

Permutohedron.

Projection...

Stefan Forcey, University of Akron Trees and polytopes

Projection...

A species is a functor from Finite Sets to Finite Sets.

• *Example*: The species \mathcal{L} of Lists takes a set to linear orders of that set.

• *Example*: The species \mathcal{B} of binary trees takes a set to trees with labeled leaves.

$$\mathcal{B}(\{a, d, h\}) = \{ \bigvee^{a d h}, \bigvee^{a h d}, \dots, \bigvee^{a d h}, \bigvee^{a h d}, \dots \}$$

For a finite set U let P(U) = the set of partitions of U.

$$\mathsf{P}(U) = \{\{U_1, U_2, \ldots, U_n\} \mid U_1 \sqcup \cdots \sqcup U_n = U\}$$

We define the composition of two species:

$$(\mathcal{G} \circ \mathcal{H})(U) = \bigsqcup_{\pi \in \mathbf{P}(U)} \mathcal{G}(\pi) \times \prod_{U_i \in \pi} \mathcal{H}(U_i)$$

Familiar: also known as the cumulant formula, and the moment sequence of a random variable, and the domain for operad composition:

$$\gamma:\mathcal{F}\circ\mathcal{F}\to\mathcal{F}$$

Composing species of tree.

Composing species of tree.

More polytopes.

More polytopes.

Number of vertices =

$$\sum_{k=0}^{n} \frac{n!}{k!}$$

Thanks!

