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1. INTRODUCTION

Hyperplane arrangements provide a classic example of the deep interactions be-
tween space and complexity. Like knots or convex polytopes, they are combinatorial
objects that arise from geometry. Also they are quite enjoyable. In just a few mo-
ments I can describe to a middle-schooler some of the open questions, and challenge
her to try, with pencil and paper, to brute-force an answer to easy cases. A little
later, I'd recommend the recent monograph from Aguiar and Mahajan.

A hyperplane arrangement is exactly what it sounds like. Take a collection of
distinct codimension-1 linear subspaces, or affine subspaces, of a real, complex, or
projective ambient vector space, and arrange them in that ambient space in any
way you like. In any of these six options, the hyperplanes will subdivide both the
ambient space and, potentially, each other. We often label all the intersections and
subdivisions; these are called the faces of the arrangement. Top-dimensional faces
are the chambers, the regions of the subdivided ambient space. If there is a face C'
that is the intersection of all the hyperplanes, we call the arrangement central; if
that center face is a point, then the central arrangement is also essential.

In the book under review, Mahajan and Aguiar decide to focus on real arrange-
ments, especially the central, essential arrangements, with secondary attention
given to the affine, noncentral case. The next decision discussed is how to dis-
tinguish between two arrangements. Is the geometry important? Then we might
want to only consider two arrangements equivalent if a linear transformation of the
ambient space yields a bijection between their respective hyperplanes. If instead
combinatorics is key, then we focus on the posets of faces ordered by inclusion:
two arrangements are combinatorically equivalent, or cisomorphic, when their face
posets are isomorphic. There are other options as well, such as defining equiva-
lence of two arrangements if one can be transformed into the other by a series of
t-parameterized rigid movements of the hyperplanes in the ambient space, for which
at any given ¢ the hyperplane arrangement has the same face poset as originally.
This latter parametric equivalence (with reflections) is implied by the geometric
equivalence and, in turn, implies the combinatorial equivalence. Relatedly, there
is also a rich field of study that allows up-to-homotopy hyperplanes, the pseudo-
hyperplane arrangements. For instance, two pseudo-lines may cross each other at
most once, just like real lines; and if they are parallel, any third line must cross both
if it crosses either. Central pseudo-hyperplane arrangements correspond precisely
to oriented matroids, as described in [I7].

2. MOTIVATION

Immediately there arises a host of open questions. The hardest are, perhaps,
enumerative: How many arrangements are there, up to combinatorial equivalence?
—up to parameterized equivalence? Since the affine hyperplane arrangements of
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n hyperplanes in real space contain a subset corresponding to convex polytopes
with n facets, these questions are clearly hard even in three dimensions (3D). The
five combinatorial classes of n = 3 planes in 3D are pictured near the beginning
of almost every linear algebra text. For n = 4 planes in 3D, there are at least
14 classes, but then you are on your own! These enumeration questions are also
unsolved in two dimensions (2D), allowing the interested researcher to study an
open question just by drawing lines on the plane. The parametric equivalence
classes in 2D, up to reflections, are found for small n in sequence A241600 of
the OEIS [12]. Many other exciting open problems start in 2D. One problem is
to find small examples in which two arrangements are combinatorially but not
parametrically equivalent. Peter Shor’s paper [II] shows existence of somewhat
larger examples, via the fact that there are symmetric pseudo-line arrangements
that can be straightened, but only to line arrangements which break the symmetry
in two different ways. Another famous question is the Kobon problem, which asks
how many triangular chambers are possible in an arrangement of n lines [3]. In
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FIGURE 1. A simple affine arrangement of ten lines in R? with 25
triangular regions. Illustrated are the Tits product of faces and
composition in the category of lunes. For instance F'G is the line
segment (outlined) which is the product of the vertex F' and the
line segment G. Lunes L and M are the outlined ray and the
hatched half-space, respectively; their composition is the shaded
quadrant.
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Figure [Il we show a simple arrangement (at most two lines cross at each vertex)
of ten lines exhibiting 25 triangles. It is a variation on Wajnberg’s arrangement as
communicated to Eric Weisstein [15]. It is an open question whether ten lines can
form 26 triangles, and the problem gets harder after that!

The total number of chambers of all shapes turns out to be easy enough to bound
in any dimension: the minimum is when you make all n planes parallel, giving
n + 1 chambers, while the maximum occurs when the hyperplanes are in general
position. The sum Zf:o () gives the maximum number of chambers in an affine
arrangement of n hyperplanes in R¥. (Sequence A008949 in [12].) As well, there is
Zaslavsky’s famous result that the number of regions of a specific arrangement is
found by evaluating the Mobius function (or characteristic polynomial) of the lattice
of flats [I6]. Many open problems are restricted versions of these questions: we ask
about the number of simplicial chambers in the case where all chambers must be
simplicial, or about the number of arrangements where certain points in the ambient
space must be contained in some of the hyperplanes. A particularly famous set of
subproblems starts with asking for the number of combinatorial equivalence classes
with n chambers in a given dimension. In fact, since polytopes are bounded by
hyperplanes, every question about the former can be extended to one about the
latter.

That brings us to listing some more sources containing good summaries of what
is known, and discussions of these and many more open problems. A great intro-
duction to the combinatorics of hyperplane arrangements, especially the relevant
posets and matroids, is Richard Stanley’s open course through MIT: lecture notes
are currently available online at [I3]. In Branko Griinbaum’s book, Conver Poly-
topes [0], chapter 18 on arrangements is focused on open questions about lines
in R2. Especially recommended is the updated edition of [5] edited by Kaibel,
Klee, and Ziegler. Speaking of whom, Giinter Ziegler’s book Lectures on Poly-
topes, [I7, Lecture 7], has an excellent chapter covering central arrangements and
zonotopes, which are polytopes with point symmetry (generalizing parallelohedra).
Goodman and O’Rourke edited a terrific resource, the Handbook of Discrete and
Computational Geometry, 2nd ed., [4], which contains chapters on arrangements by
Goodman and by Halperin. We should mention again Thomas Zaslavsky’s ground-
breaking book by its main title, Facing Up to Arrangements [16]. Some more recent
complements to Aguiar and Mahajan’s book include the monograph by Orlik and
Terao [§], which also covers complex arrangements, and the textbook by Dimca [2],
which focuses on algebraic topology and also covers the projective case.

3. ALGEBRAIC STRUCTURES

The book we are currently reviewing really takes off at a point immediately be-
yond enumerative combinatorics. Algebraic combinatorics, broadly defined, is the
study of algebraic structures on combinatorially defined sets. Carlo-Rota famously
argued that algebra and combinatorics are each valuable to the other [9]. Combi-
natorics often affords the algebraist a concrete example of structures to experiment
with. Algebra often provides invariants, allowing combinatorialists to prove two
structures are distinct. In the extreme case, algebraic invariants can yield contra-
dictions that demonstrate the impossibility of geometric or combinatorial construc-
tions. More typically, advances occur from recognizing that a particular algebraic
or combinatorial structure arises in two disparate areas. This might allow the
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theorems of one theory to be applied in the other. Several kinds of hyperplane ar-
rangements arise in other contexts: for instance the essential central arrangements
are precisely the dual fans of zonotopes. Thus an algebraic structure on faces of
the arrangements can restrict to a not-so-easily noticed structure on the faces of
zonotopes. As we will see, Aguiar and Mahajan add a great deal of new “connective
tissue” along these lines.

The first algebraic structures that the authors focus on are monoids, especially
left reqular bands, and their linearizations. Flats of a hyperplane arrangement are
intersections of any of the hyperplanes. The Birkhoff monoid of flats is simply the
join operation on the poset of flats, which is intersection. If the arrangement is
central, then intersections are never empty and the unit is the center. The Tits
product, pictured in Figure [I was first defined in [I4]. The product of two faces
FG is the face encountered after starting at any point interior to F' and traveling
an infinitesimal distance in a straight line toward any point interior to G. Thus F'G
might equal F' itself, for instance if F' is a chamber. Otherwise F'G may be a face
containing F. If the arrangement is central and C' is the center, then F'C'= F = CF.
In that case the semigroup is named the Tits monoid; in general is is called the
face semigroup.

The Tits monoid is an associative, left unital structure obeying the equations
F? = F and FGF = FG. The latter equation is equivalent to FGFH = FGH,
which can be shown in one direction by multiplying on the right with H and in the
other by allowing H = C. Associative monoids obeying these rules are known as left
reqular bands. Without requiring associativity, these are also known as left spindles
(with unit) in the context of knot quandles. The latter algebraic structures are
complete invariants of knots. They were designed to reflect Reidemeister moves,
especially the braid relation, on the arcs of a knot diagram in [6]. The spindles and
their homology are discussed in [I]. Since many algebraic structures on hyperplane
arrangements can be extended to the general setting of left regular bands, this
connection to knot theory deserves further exploration!

Aguiar and Mahajan use their book to rapidly expand the list of combinatorial
types of subobjects in arrangements, the list of various algebraic structures on
those objects, and theorems and connections to other areas of algebra that result.
They linearize the monoids we just described by treating the faces as the basis of an
algebra. One nice result is that even when the arrangement is affine (or not central),
the linearization has a unit. The unit is found as the formal linear combination of all
the bounded faces, positive for the even dimensional faces and negative for the odd.
(If the arrangement is not essential, we use rank instead of dimension.) Multiplying
this combination by any single face gives back the face itself; see Figure 2lfor a small
example. Of course, for a central essential arrangement, the zero-dimensional center
is the only bounded face, so it is itself the unit.

Another new construction herein is the category of lunes. A lune is a cone (an
intersection of half-spaces) which lies between a pair of nested flats: the base flat
contained in L and the case flat containing L. Specifically, a lune L is a chamber in
the arrangement formed by considering its case as a new ambient space subdivided
by only those hyperplanes which contain its base. For instance, in Figure 2 P is
a lune with base x and case the ambient plane. The chambers P and @ together
form a lune with base the vertex z, and case again the plane. Lunes that have
matching base and case flats can be composed—the base is the target and the case
is the source. For example, in Figure [l the lunes L and M are composed as the
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bx+y+z-a-b-c+19)
=b+S+b-S-b-S+S§
=b

x+ty+z-a-b-c+S)P
=P+R+Q-R-0-5+8
=P

FIGURE 2

lune L o M; the matching source and target is the flat which is the line containing L
and bounding M. The category of lunes supports further structures such as actions
of the face semigroup and Birkhoff monoid. On top of that, there is a substitution
product of lunes which allows an operad to be described. The authors promise a
sequel which will present a theory of Hopf monoids for hyperplane arrangements in
which operads will play an even larger role.

Special sequences of arrangements correspond to well-known combinatorial
species. Several examples covered in the book under review (see chapter 6) in-
clude the braid arrangement, also known as the type A reflection arrangement, and
the type B reflection arrangement. The braid arrangement in R™ is well known as
the dual fan of the n-dimensional permutohedron. The latter is the zonotope con-
structed by taking the convex hull of the permutations of the vector (1,2,...,n+1).
Thus the chambers of the braid arrangement correspond to permutations of [n+ 1].
The rest of the faces, flats, cones, lunes, face-types, lune-types, and so forth, also
correspond to well-known combinatorial sequences, and Aguiar and Mahajan pro-
vide a comprehensive dictionary including many new entries. For instance, in the
braid arrangement each top lune corresponds to a certain linear partition, and the
chambers of that lune are shuffles of the partition. Thus lunes can be useful for or-
ganizing or generalizing classical constructions based on shuffles. In later chapters
the authors demonstrate this principle. For instance, in chapter 10 they use top
lunes to characterize Lie elements: the Ree top-lune criterion, which generalizes
Ree’s shuffle-based characterization.

Indeed, Aguiar and Mahajan’s book is a gold mine for anyone searching for
just the right algebraic structure, possibly an obstruction or invariant tailored to
a combinatorial problem. There are over 600 pages, including appendices on the
basic algebraic concepts one might need to review.

I will end with mention of a few more highlights. The authors spend a good
bit of time on the theory of Eulerian families and Eulerian idempotents in the
Tits algebra. These are idempotent elements of the algebra (thus formal sums of
faces) indexed by the flats. The idempotents in these families are also mutually
orthogonal. Complete systems (collections of elements that sum to the unit element)
of primitive orthogonal idempotents of the Tits algebra were constructed previously
by Saliola in [I0]. However, Aguiar and Mahajan show that every complete system
of the Tits algebra arises from the Saliola construction. The authors then show
a list of characterizations of these idempotents, including use of noncommutative
zeta and Mobius functions.

There is one more important item to point out. Some of the best parts of the
book are in the voluminous endnotes to each chapter. Here the authors collect
tantalizing potential connections and possibilities, as well as making clear how the
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results just presented are separated into categories of old, new, and newly simplified.
The endnotes provide detailed and carefully researched mathematical history to go
along with the top-notch exposition throughout. The result is that not only are
all the citable theorems cited, but their historical genesis is revealed. The notes

are

also packed with very useful information; for instance I just now learned that

William Lawvere refers to left regular bands as graphic monoids, in his papers on
topos theory [7]. These sort of hints can easily lead to projects—an experimental
study of categories enriched over monoidal categories of lunes suggests itself.
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