
Project description:
Finite type invariants and grope constraints on braids and string links.

1 Introduction and Examples

There are famous connections between the derived and lower central series of the fundamental
group of a topological space and gropes continuously mapped into that space. The kth term in the
derived series of the fundamental group of a space consists of the elements which are boundaries of
the image of a map from a grope of height k to the space. The kth term in the lower central series
of the fundamental group of a space consists of the elements which bound the image of a map from
a grope of class k to the space. [56] In the latter case a candidate grope of shape 1/2 can always
be supplied. Braid groups of n strands arise as the fundamental groups of configuration spaces
of n points in the two dimensional disk under a quotient map identifying permutations of those
points. Pure braid groups are the fundamental groups of the ordered configuration space of D2.
There are also hints of another geometrical characterization of the derived and lower central series
of the braid groups. The subgroup of the pure braid group made up of all pure braids such that all
(pairwise) linking numbers of the closure of the braid are zero is the second lower central subgroup
of the pure braid group. In general, for the n-strand pure braid group, the Brunnian braids are a
proper normal subgroup of the (n-1)–st lower central subgroup, with which they actually coincide
up to link homotopy. [40],[41],[42]

The principal investigator has recently introduced a family of filtrations of the braid groups
that potentially illuminates connections between these known facts. Consider a subset of braids
on n strands for which there is also given a facet f of K(n), the Stasheff associahedron, which
determines a parenthetical partition of the strands. The Stasheff associahedra are combinatorial
polytopes whose vertices correspond to the complete partitions of a string of given length. Higher
dimensional faces correspond to incomplete partitions which are compatible along shared lower
dimensional faces.[108],[78] Furthermore, for each pair of matched parentheses in the partition of
the string of length n that is associated to f , there is assigned a grope of type T represented by a
binary tree. Grope annuli of type corresponding to a binary tree are CW complexes made up of
a “cylinder” of any genus (surface with two circular boundary components) and with punctured
tori iteratively attached along the meridians and longitudes of each doughnut hole in the cylinder
according to the recipe encoded in the tree–right branch means longitude, left meridian. For
initial purposes the gropes will be embedded in standard form (unknotted and not self-linked) in
a 3-manifold. The constrained braids are those which allow the strands in each partition to be
contained in an annular grope of the given type for that partition. Let the braid be embedded in
D2 × I. Then in other words for a set of strands whose initial “input” points are enclosed by a pair
of matched parentheses there is also a standardly embedded grope cylinder of the type associated
to that pair of parentheses with one boundary surrounding the set of input points in D2 × 0 and
the other the outputs in D2 × 1. The constraint is that no strands ever intersect the surface of the
grope. The braid must also respect the partition associated to f by having the output points of the
strands fall into the same partition, so that the braids for a given f and list of grope types form a
subgroup of Bn. By respecting the partition it is meant that the permutation associated with the
braid is such that it contains no factors which interchange positions from within and without any
enclosing pair of parentheses of the partition.
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Example 1 Here is the n = 4 pentagon K(4) from the operad of associahedra.
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Figure 1 is an example of an element of BT
4f where f is the side of the pentagon K(4) with corre-

sponding partition shown and T is the grope type with corresponding binary tree shown.

Figure 1: Typical element of a grope constrained subgroup of B4.

Example 2 Here is the associahedron K(3) :

(••)• ••• •(••)

Figure 2 is an example of an element of BT
3f where f is the vertex of the line segment K(3) : with

corresponding partition shown and T is the grope type with corresponding binary tree shown.
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Figure 2: Typical element of a grope constrained subgroup of B3.

Note that in Figure 2 the strands at first appear to be non-monotonic, but that this is just an
artifact of trying to show the grope as well as the strands. It will be necessary to prove that
whenever the strands do indeed form a braid up to isotopy that then the constraining gropes can
be smoothly embedded around the monotonic strands. Note that if there are several sub-partitions
of the same kind and not belonging respectively to separate sub-partitions, such as the two pairs
in •(••)(••), then additional rules are needed to ensure the construction of a subgroup. Either it
is necessary to insist that all sub-partitions end up where they began in the partition or if they
are allowed to switch (as in Figure 8) it is required that unseparated sub-partitions of the same
kind be assigned the same grope type. When the former restriction is applied the result is defined
as semipure. The pure constrained braids are a special case of the semipure. The latter can be
described as constrained braids whose constraining (grope) annuli when drawn with surface extrema
extending from the top parentheses to matching bottom ones appear to be a pure braid diagram.

In order to attack open questions about finite type invariants, grope cobordism and concordance,
it is of use to answer some fundamental questions about these grope constrained subgroups. This
may include finding presentations for them, precisely describing the filtrations induced by the
associahedra and the grope types and relating these subgroups to more familiar ones such as the
Brunnian braids and commutator subgroups. It is also part of the project to investigate the link
types that arise as closed elements of grope constrained subgroups. In this context Professor Forcey
would like to find or recognize invariants that reflect the geometry of the constrained braids.
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2 Presentations

Given a group extension G′ of a group G by a group A, by which is meant a short exact sequence

1 → A → G′ → G → 1

and presentations of G and A, there is a simple recipe for a presentation of G′ as shown in [45].
In the case of a subgroup Xn of Bn there always is the exact sequence

1 → PXn → Xn → SXn → 1

where PXn is the pure version of our subgroup Xn, i.e. intersection of Xn and Pn, and SXn

is the subgroup of permutations that can be achieved as the projections of braids in Xn onto the
symmetric group. [57]

This reduces the problem of finding a presentation of a subgroup of constrained braids to finding
presentations for the corresponding pure constrained braids and permutations. It seems that this
problem will vary from relatively simple to quite difficult based primarily on the complexity of the
grope types and secondarily on the number of strands. The hardest problems will correspond to
facets of codimension n/2 in K(n). Some cases are straightforward. Figure 3 is Professor Forcey’s
initial conjecture about the generators of the pure braids of the first example above.

Figure 3: Generators of a pure grope constrained subgroup.

The subgroup of permutations will depend only on the facet of K(n). For the facet f = •(••)•
as in example 1, the permutation subgroup SBT

4f is presented by < a, b|a2 = b2 = 1, ab = ba >
For another example, in K(5), consider the facet labled by (••)(•••). The permutation subgroup

is presented by < a, b1, b2|b1b2b1 = b2b1b2, a
2 = (bi)2 = 1, abi = bia > where i = 1, 2. a is the

interchange on the first two positions, b1 switches the first two in the second group, and b2 switches
the last two.
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There is much more work to be done here. The goal is to start with a facet of K(n) and a list
of binary trees, add labels to strands and leaves, and then build a presentation out of those labels.
Additional relevant material about presentations of related mapping class groups is in [39] and [58].

3 Filtrations

Given a facet of K(n) it seems clear that there are sequences of grope types that provide a filtration
of the subgroup of Bn of braids for which the partition associated to the facet is preserved. This
latter subgroup of braids can be described as being constrained by arbitrary genus cylinders. The
smallest subgroup of the filtration is given by the case in which all the grope types are trivial, that
is, the constraining surfaces are simply ordinary genus 0 cylinders. Figure 4 shows typical elements
from an example of a filtration which includes the subgroup to which figure 1 belongs.

Figure 4: Filtration of braids which form the image of a certain subgroup of permutations.

It will be necessary to prove a precise theorem about the sufficient complexity of a grope to
be equivalent to an annuli given the number of strands or constrained groups of strands within
and without it. An initial conjecture is that any grope which includes surfaces attached to both
longitudes and meridians is sufficiently complex for any strand configuration. This limits the
available gropes to those with shapes of 1/2 and -1/2. For a constraining gropes of shapes +1/2,
-1/2 and for respectively n exterior or interior strands, Professor Forcey conjectures that the class
must be larger than n for the grope to be sufficiently complex.
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Also, given a fixed grope type T , there is a filtration of Bn based on inclusion of faces in K(n).
Figure 5 shows some typical elements from an example of this sort of filtration of B4.

Figure 5: Filtration of braids that are constrained by a certain grope type.

There is potential for the filtrations above to be combined into a very comprehensive family
of filtrations of Bn. This is in done by beginning with a complete parenthization of the strands,
corresponding to a vertex of the associahedron. Then we loosely construct an (n− 2)–dimensional
array where (n − 2) is the number of pairs of parentheses. The positions in the array correspond
to choices of grope type for each pair of parentheses, indexed by increasing complexity. Thus the
first position in the array corresponds to the empty grope for each pair of parentheses, and gives
Bn itself. Moving one step away from that origin in a given direction means introducing the trivial
any-genus grope on that pair of parentheses which is equivalent to constraining the braid to respect
that pair of parentheses by insisting that the associated permutation does not disturb the enclosed
locations. Moving in any direction as long as the array indices increase or remain constant means
we pass from a group to one of its subgroups. Eventually by increasing the array index for any
pair of parentheses the grope type will be complex enough to be considered a simple annulus for
the purposes of the constrained braid. The limit in all indices then is the completely constrained
braid relative to the complete parenthization–all the gropes are simple annuli (class 1 gropes).

Notice that as in the following example (in Figure 6) that a braid is often found in two different
nontrivial constrained forms, which are not directly related through one of the filtrations described
above.

It may be important to know when to expect this sort of overlap, whether or not the intersection
is a subgroup in turn and if so how to achieve its presentation. Nontrivial intersections occur both
between subgroups that share a common vertex of the associahedra (and so occur on the same
filtration array) and between subgroups in entirely different families.
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Figure 6:

4 Brunnian braids

Notice how Brunnian braids are often found as constrained pure braids. The basic example is the
braid whose closure is the Borromean rings, shown in Figure 2 above.

Naively this phenomenon is due to the way that locally the constraining grope allows only
“canceling interaction” between the strands inside it and out. That is, such pairs of separated
strands have relative winding numbers of 0. More broadly, this hints at a subgroup relationship
with the commutator subgroup and lower central series of subgroups of Pn. The constrained braid
shown in Figure 1 lies in the second lower central subgroup of the pure braid group P4. This
latter braid also exemplifies a generalization of the Brunnian braids known as the k-trivial or k-
decomposable braids, in which deletion of any k strands results in a trivial braid. Specifically,
deletion of any two strands in the first example results in a trivial braid. Figure 7 shows another
2-trivial braid that is constrained by nested gropes. Again, since the actual relationship between
Brunnian braids and the lower central series is only precise up to link homotopy of braids, it may
be that the relationship between grope constrained subgroups and iterated commutators will follow
suit. Besides [42] other relevant work has been described in [104], [46], [62] and [63].

5 Links

The closure of a constrained braid is a representation of a knot or link. Since the partition is
preserved, the closure can be visualized as a link with closed gropes linked and knotted around and
among its components. Within a constrained subgroup of Bn this picture suggests two variations
of the equivalence on braids generated by link homotopy. First constrained link homotopy of braids
would be the same as ordinary link homotopy, except with some limitation since strands are not
allowed to intersect gropes. Thus the ordinary link homotopy classes would be subdivided. Secondly
grope homotopy of braids would also allow changes of self crossing of closed grope components.
Locally such a grope crossing change would appear as a crossing change of ordinary cylinders and
their interior strands and nested cylinders all at once. Since a link component of a constrained link
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Figure 7: Example of a 2-trivial braid.

necessarily lies all within or all without each of the grope components, constrained link homotopy
is a special case of grope homotopy.

To be a knot the partition of the strands must be “homogenous” by which is meant a partition
into subsets of strands of equal cardinality. Otherwise, in order to respect the partition the braid
is forced into having a closure with multiple components. Figure 8 is an example of a simple
closed constrained braid that is isotopic to a recognizable knot–the connected sum of a figure eight
and a trefoil. It is an intermediate goal to find link invariants that reflect the grope constraint.
Upon inspecting a braid diagram and determining that it respects partitions (from a certain chain
of included facets in the appropriate associahedron) it would be of value to be able to calculate
invariant obstructions to types or classes of gropes that the braid might potentially be constrained
by. This would be of interest especially if it afforded a new geometric understanding of existing
well known invariants.

It is known that there is a close relationship between link homotopy, grope cobordism, and the
number of components of a link. Two n-component links are link homotopic if and only if they
cobound disjoint gropes of class n embedded in S3× [0, 1]. [56] It is of interest to determine how this
relationship is reflected in the cases of grope and constrained link homotopy as described above.
More relevant research on link homotopy and its invariants is to be found in [81],[82],[3],[5],[26],
[31],[36],[42] and [41].
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Figure 8: Closure of a grope constrained braid.

6 Goussarov–Habiro theory

There are several intimate connections between the lower central series of pure braid groups, ho-
motopy theory, and Vassiliev invariants. Professor Forcey hopes to shed light on some outstanding
related mysteries in part by investigating subgroups of braids constrained by gropes. For two knots
K1 and K2 the following are equivalent:

(i) K1 and K2 have the same finite type invariants of Vassiliev degree < n.

(ii) K1 and K2 are cobordant by a capped grope of class n.

(iii) K1 = the closure of a braid b and K2 = the closure of pb, where p is in LCSn(Pk)

Sources include:[105], [106], [96], [94], [95], [15] and [16]. Now since Pk is the fundamental group
of Config(D2, k), p is thus the boundary of the image of a grope of class n mapped continuously
into Config(D2, k). It is an open question bearing on the geometric meaning of the finite type
invariants whether there is any direct relation between the various pairs of gropes of class n that
occur above. For related material see [47]. In order to elucidate such a relationship the plan is to
compare the filtrations given by grope constraints on the one hand and by the lower central series
and derived series of the pure braids on the other. It may be necessary to pass to link homotopy in
order to have a true comparison. It is expected that the constraining gropes will be comparable to
the class n gropes in the equivalent statements above, enabling a search for canonical cobordisms
and continuous maps respectively using and from the constraining gropes in question.

As shown in [107] points (i) and (iii) above also apply with finite type invariants replaced
by delta finite type invariants and the pure braids replaced by the commutator subgroup of the
pure braids. It is an open question whether there is a grope cobordism formulation of delta finite
type invariants. Here again it seems likely that a precise comparison of braid commutators and
constrained braids might uncover candidate gropes for cobordisms.
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The equivalent three statements above lead to an equivalence relation on knots first formulated
by Goussarov and Habiro, the latter of whom used tree claspers instead of gropes and the former of
whom used certain crossing changes instead of pure braid composition. [33], [38], [95] These equiv-
alence classes form abelian groups under connected sum of knots after identifying the connected
sum of K and (−K) with the unknot, but do not for links. It is an open conjecture that string
links have the same behavior under composition with elements in the lower central series of pure
braids and grope cobordism as do knots. They do form a nonabelian group under the equivalence
relation of Goussarov. The string links are braids without the monotonicity requirement, and thus
without existence of inverses. [36] Since monotonicity is not required of string links then gropes of
higher complexity and symmetry contribute to the structure of grope constrained submonoids of
string links than for braids of similar size. For instance, no grope of finite class can be sufficiently
complex to be equivalent to a simple annuli constraint of a string link. The insistence on standard
embedding of the gropes may also be relaxed for string links, allowing linked and knotted grope
types. Two examples of constrained string links are pictured in figures 9 and 10. It seems wise

Figure 9: Grope constrained string link.

Figure 10: Symmetric grope constrained string link.

to look for a connection between symmetric grope cobordism, constrained string links, and knot
equivalence modulo the derived series of the pure braids. First, recall that the kth term in the
derived series of the fundamental group of a space consists of the elements which are boundaries of
the image of a map from a grope of height k to the space. Symmetric gropes have positive integer
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height. Also note that the equivalence relation on knots induced by composition with elements
of the derived series of the pure braids again gives rise to a group. It is unknown whether this
equivalence relation is reflected by that given by symmetric grope cobordism, and to use grope
constraints to investigate further it may be necessary to pass to string links.

Symmetric grope cobordism (in three dimensions) projects onto the filtration of the knot con-
cordance group (in four dimensions) introduced in [13] and [12]. Compare with [50]. Knots that
are related by composition with a pure braid are also related by a cobordism in S3 × I introduced
by the principal investigator. Precisely, if K1 = b and K2 = pb for p ∈ Pk then there is a (genus 0)
surface that is a cobordism from K1 to K2

⋃
p. The number of saddle points in this cobordism is

k; each occurs as a component of p is connected summed with b. Since p is a link of k unknotted
components it would be nice to know the conditions on p such that it is concordant to the unlink,
so that as a corollary K1 is concordant to K2. Link concordance is discussed in [26] and [30].

If concordance invariants can be constructed, perhaps as a limit of symmetric grope cobordism
invariants, then the open questions of torsion in the concordance group could be attacked. There
are also a series of conjectures of Conant and Teichner relating the knot groups to the filtration of
the knot concordance group by grope cobordism in four dimensions. For instance, they conjecture
that for a given collection of grope shapes, the two groups of equivalence classes of knots in 3 and 4
dimensions based on that collection are actually isomorphic. Further resources on knot concordance
are [21], [8], [10], [18], [32], [48], [59], [65] and [75].

7 Categorical considerations

Categories equivalent to subcategories of the free braided monoidal category on one object are given
such that objects are partitioned strings of the one object. The strands making up a morphism
would be required to obey grope constraining. The braid need not however respect the partition
exactly, since we do not require that all morphisms be composable. Morphisms then exist between
objects that have the same string length and congruent partitioning, such as

•(••)(••) → (••) • (••)
or •((• • •)•)(••) → (••)(•(• • •)) • .
Introduction of duals would allow us to speak of the subcategories of constrained tangles as

well. As well as not enforcing monotonicity, tangles also allow a strand to begin and end at the
same level, or to be a circle.

A “category of knots” point of view is especially well suited to the cobordism relation, since a
surface can be seen as a morphism between disjoint collections of its boundaries. A 1+1 dimensional
topological quantum field theory (TQFT) is determined in the case of a finite dimensional vector
space range by its values for the disk, for the annulus, and for the “pair of pants,” or trinion. It
is a related goal of the principal investigator to formulate TQFT versions of finite type invariants
by describing a field theory of grope cobordisms. This would involve in addition to the ordinary
theory only showing how to assign an invariant to a grope annulus, since a grope trinion and a
grope disk can both be cut into a grope annulus and an ordinary trinion or disk respectively. One
possibility to investigate would be families of invariants generated by assigning to a grope annulus
the group cohomologies of the various n-strand constrained subgroups of Bn or Pn associated to
the grope type.

Since we are considering categories with 1 and 2 dimensional morphisms, we may indeed wish
to bring to play the full power of higher dimensional category theory, using bicategories such as
V-Cat for V a monoidal category. Also of value may be the realization that the associahedra, the
gropes and the braids all form operads indexed respectively by length of string to be partitioned,
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class and number of strands. It would be of much interest if the constrained subgroups arise as
products of operads, or of operad algebras. Relevant resources include [49] and [78].

8 Homotopy groups of Spheres

The lower central series of braids also are important in sphere homotopy. For n > 3 the pure braid
groups over S2, with face maps deletion of strands and degeneracies doubling of strands, form
a simplicial group with geometric completion of the homotopy type of S2. There is a surjection
from the Brunnian braids on n strands to the nth homotopy group of S2. The nth homotopy
group of S3 is given by a quotient of the Brunnian braids on n strands over S2. The Brunnian
braids are cycles in the forementioned simplicial group. Since Brunnian braids often occur as grope
constrained braids it is a good idea to look among the braids constrained by nested gropes for
cycles and boundaries in regard to the simplicial structure. This is approximately a question posed
by Fred Cohen in [14]. If quotients of grope constrained subgroups can be fit into a framework
that realizes the homotopy groups of S3 then it is tempting to generalize the process and look for
relations between the quotients of grope constrained subgroups of braids over Sn and the homotopy
groups of Sn+1.

9 Broader Impact: Research at an HBCU

The roles of researcher and instructor in mathematics are often seen to be at odds, one suffering
when the other is focused upon. This is an unfortunate perception, since in actuality the quality and
the motivational power of teaching at the university level is directly proportional to the instructor’s
involvement in leading edge research. The teacher/researcher is the link for the student between an
esoteric world of developing science and the more familiar sphere of the classroom. Not only does
the research activity of the professor keep his or her teaching relevant by forcing him to stay abreast
of recent developments, but glimpses of the new results and unanswered questions he encounters
energize his students with a larger view of their studies than afforded by the more mundane practice
problems in their homework.

In particular the research into low dimensional topology discussed here will be performed largely
at Tennessee State University, a historically black university with a large proportion of minority
students. As well as helping to enrich the classroom instruction of the principal investigator this
research project will further the participation of African Americans in mathematical research in
several specific ways. The mathematics department at TSU requires a thesis from both its under-
graduate senior mathematics majors and its masters degree candidates. Faculty advise students on
their theses, and so active research projects such as the one being proposed are invaluable as sources
of research topics for the degree candidates. The student benefits from having the experience of
participating in new research and helping to develop new results and in having an adviser active
in the field they are choosing to study. In addition, TSU is working towards the establishment
of a Doctorate program in mathematics. Steps in that direction include the hiring of additional
faculty actively involved in research, and the procurement of research grants to help continue that
activity. As of this date there is only one PhD in mathematics offered by any of the historically
black colleges and universities in the U.S., at Howard University. There is much to be gained from
increasing this number in terms of broadening the participation of severely underrepresented ethnic
groups in the mathematical community. The benefits to society of encouraging contributions to
scientific research from all ethnic groups should be self evident. Whenever, for whatever historical
or economic reasons, there is an underrepresented segment of society in an area of scientific en-
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deavor, it means that inevitably valuable sources of talent and creativity are remaining untapped.
The incalculable rewards for correcting this state of affairs are truly mutual.

On top of simply increasing the number of minority researchers in mathematics, the proposed
project has as a partial goal the strengthening of ties between Tennessee State University and its
counterparts in the region and wider academic community. The research proposed builds upon work
done by T. Stanford, J. Hughes and J. Conant among others. These are some of the researchers in
low dimensional topology that Professor Forcey has already begun to communicate with in regard to
the work proposed. They are located respectively at New Mexico State University, Elizabethtown
College in Pennsylvania and University of Tennessee in Knoxville. This last in particular houses
the NSF Metacenter Regional Alliance for the advancement of computational science in historically
black colleges and universities. While the project in question may not require large-scale computing
facilities at least initially, it cannot but help encourage the networking of researchers within the
Metacenter.

As results are finalized the principal investigator as well as potential student and faculty col-
laborators plan to disseminate the information through several venues. Articles will be prepared
and submitted to appropriate scholarly journals, such as Knot theory and its Ramifications and
Algebraic Topology. The latter, in which the principal investigator has published previously, is
available online for free. Even before acceptance of journal articles, however, the material will be
made available through preprint servers such as the arxiv and the Hopf server, as well as through
conference and seminar presentations. Thus the answers to important mathematical questions
discussed above will be easily available to those who have interest in the subject, its practical
applications and potential further research.
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