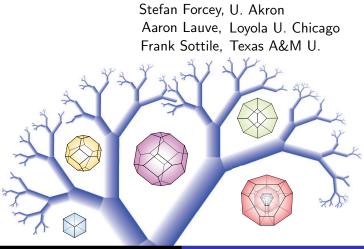
Cofree compositions of coalgebras: Trees, polytopes and indelible grafting.



Stefan Forcey, Aaron Lauve, Frank Sottile,

Trees and polytopes.

"Niceness is hereditary in species."

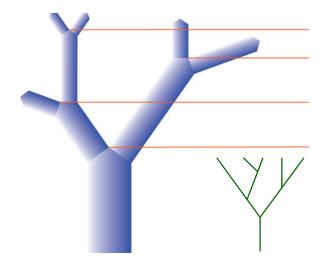
"Niceness is hereditary in species."

For this talk, nice properties of species of coalgebras will be:

- 1. Cofree-ness,
- 2. Hopf-ness,
- 3. Polytopal-ness.

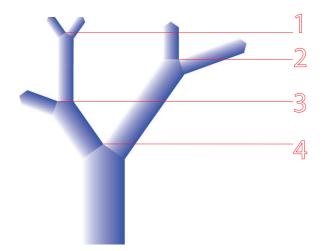
But first, our cast of characters:

Ordered trees \mathfrak{S} .

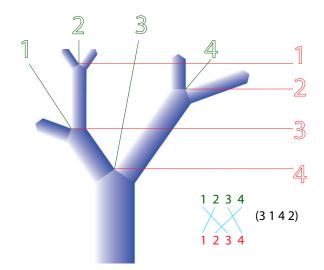


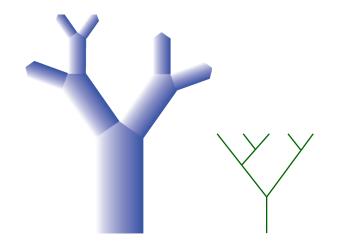
Stefan Forcey, Aaron Lauve, Frank Sottile, Trees and polytopes.

Ordered trees S.

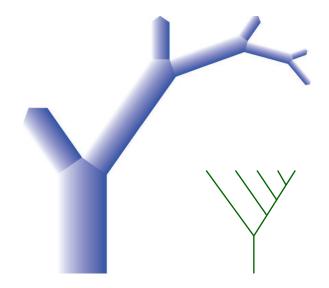


Ordered trees are permutations \mathfrak{S}_{n} .





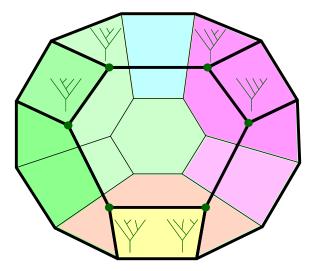
Combed binary trees \mathfrak{C} .

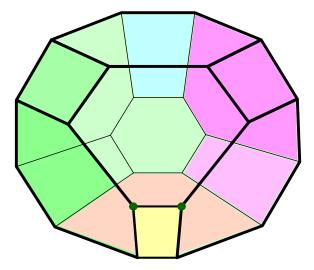


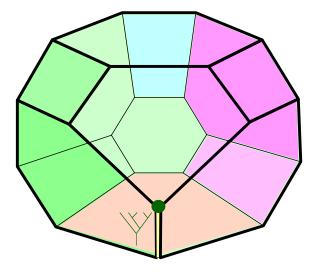
Stefan Forcey, Aaron Lauve, Frank Sottile, Trees and polytopes.

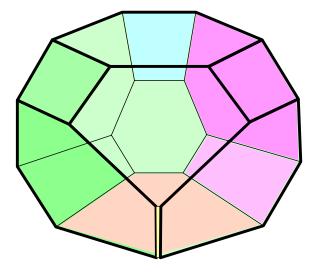
Our cast as Polytopes.

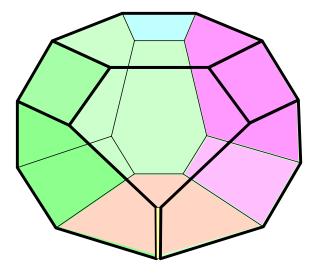
\mathfrak{S} : Permutohedron.

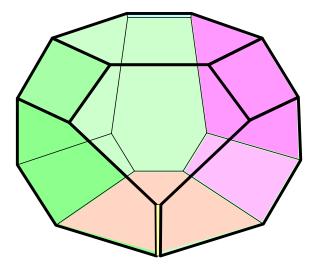


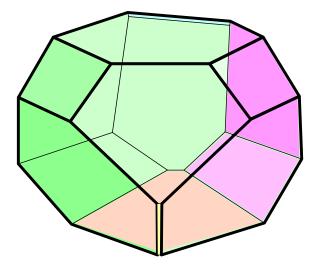


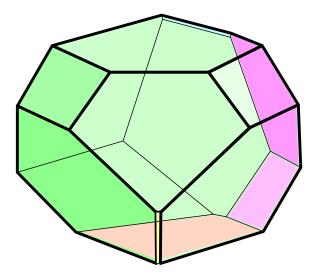


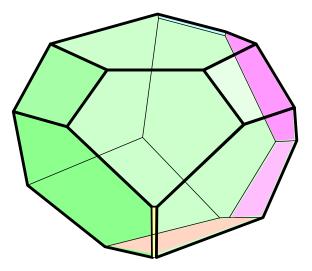




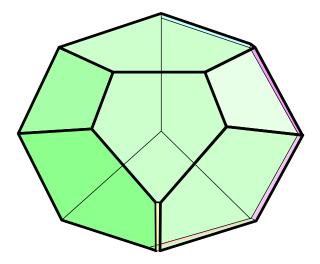








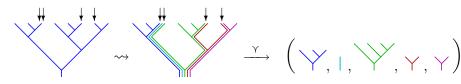
\mathcal{Y} : Associahedron



Our cast as graded Hopf algebras.

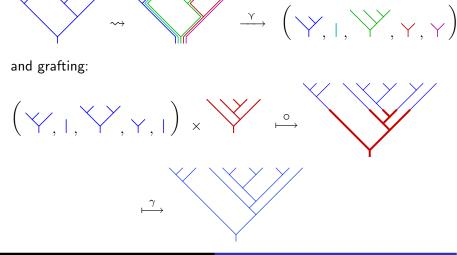
A Hopf algebra of binary trees.

Two operations on trees: splitting



A Hopf algebra of binary trees.

Two operations on trees: splitting



Here is how to multiply two trees:

Here is how to multiply two trees:

Here is how to multiply two trees:

Our cast as species.

A species is an endofunctor of Finite Sets with bijections.

• *Example*: The species \mathcal{L} of lists takes a set to linear orders of that set.

• *Example*: The species \mathcal{Y} of binary trees takes a set to trees with labeled leaves.

$$\mathcal{Y}(\{a, d, h\}) = \{ \bigvee^{a d h}, \bigvee^{a h d}, \dots, \bigvee^{a d h}, \bigvee^{a h d}, \dots \}$$

We define the composition of two species:

$$(\mathcal{G} \circ \mathcal{H})(U) = \bigsqcup_{\pi} \mathcal{G}(\pi) imes \prod_{U_i \in \pi} \mathcal{H}(U_i)$$

where the union is over partitions of U into any number of nonempty disjoint parts.

$$\pi = \{U_1, U_2, \ldots, U_n\}$$
 such that $U_1 \sqcup \cdots \sqcup U_n = U$.

Familiar(?): also known as the cumulant formula, and the moment sequence of a random variable, and the domain for operad composition:

$$\gamma: \mathcal{F} \circ \mathcal{F} \to \mathcal{F}$$

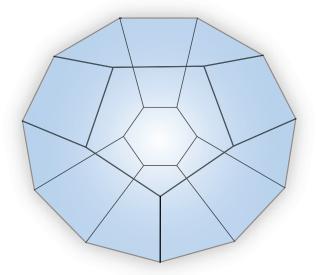
Ordered tree of trees: indelible grafting.

Example:

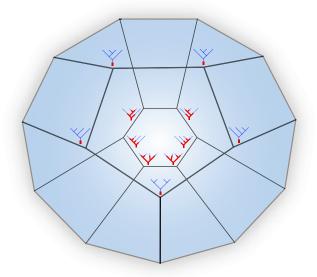


The graft is indelible! We will focus on the structure type, forgetting the labels.

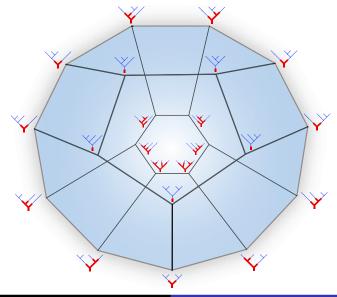
Example: $\mathfrak{S} \circ \mathcal{Y}$ in 3d.



Example: $\mathfrak{S} \circ \mathcal{Y}$ in 3d.



Example: $\mathfrak{S} \circ \mathcal{Y}$ in 3d.



Stefan Forcey, Aaron Lauve, Frank Sottile, Trees and polytopes.

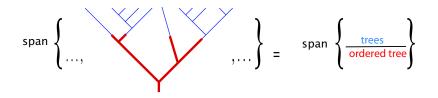
Given two graded coalgebras we combine them in a way reminiscent of species composition.

Let C and D be two graded coalgebras. We will form a new coalgebra $\mathcal{E} = D \circ C$ on the vector space

$$\mathcal{D} \circ \mathcal{C} := \bigoplus_{n \geq 0} \mathcal{D}_n \otimes \mathcal{C}^{\otimes (n+1)}.$$

By construction, the basis for a composition of coalgebras is indexed by the types of the composition of the species.

 \mathfrak{S} *Sym* $\circ \mathcal{Y}$ *Sym* =



Finally: results.

Given composed coalgebras $\mathcal{E} = \mathcal{C} \circ \mathcal{D}$,

Theorem If C and D are cofree coalgebras then so is E. Primitives are easy to compute.

Theorem If either C or D is a Hopf algebra with a special connection to \mathcal{E} , then \mathcal{E} is a (one sided) Hopf algebra too. Antipodes are found recursively.

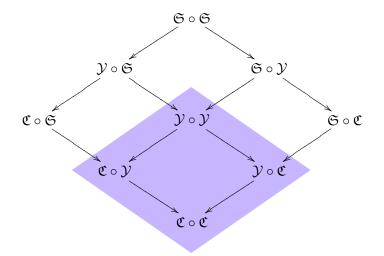
Conj. If C_n and D_n index vertices of polytopes, so does \mathcal{E}_n .

Here is an example of the coproduct in $\mathcal{Y}Sym \circ \mathcal{Y}Sym$:

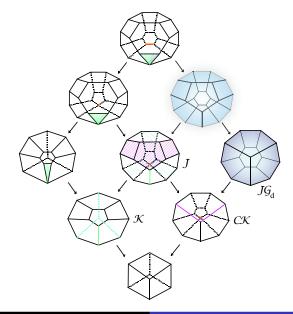
$$\Delta \qquad = \qquad \otimes \qquad + \qquad \qquad = \qquad \otimes \qquad \otimes \qquad + \qquad \qquad = \qquad \qquad \otimes \qquad + \qquad \otimes \qquad + \qquad \otimes \qquad + \qquad = \qquad \qquad = \qquad \qquad = \qquad \otimes \qquad = \qquad \qquad =$$

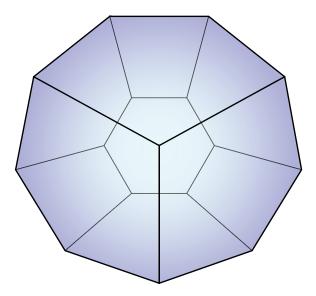
Here is an example of the product in $\mathcal{Y}Sym \circ \mathcal{Y}Sym$:

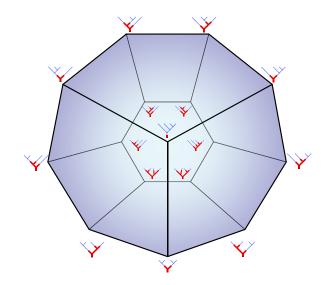
Composing species of trees.

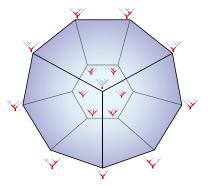


Polytope conjecture.









This polytope has been seen before! Stellohedron (S. Devadoss, A. Postnikov, V. Reiner, L. Williams).

Number of vertices
$$=\sum_{k=0}^{n} \frac{n!}{k!}$$

Questions and comments?