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Our slogan.

“Niceness is hereditary in species.”
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Our slogan.

“Niceness is hereditary in species.”

For this talk, nice properties of species of coalgebras will be:

1. Cofree-ness,

2. Hopf-ness,

3. Polytopal-ness.

But first, our cast of characters:
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Ordered trees S.
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Ordered trees are permutations Sn.

 1  2  3  4

 1  2  3  4

(3 1 4 2)
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Binary trees Y .
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Combed binary trees C.
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Our cast as Polytopes.
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S : Permutohedron.
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Tonks cellular projection.
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Tonks cellular projection.
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Y : Associahedron
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Our cast as graded Hopf algebras.
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A Hopf algebra of binary trees.

Two operations on trees: splitting

?? ??

 

?? ??

g−−→
(

, , , ,

)

.
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A Hopf algebra of binary trees.

Two operations on trees: splitting

?? ??

 

?? ??

g−−→
(

, , , ,

)

.

and grafting:

(

, , , ,

)
× ◦7−→

γ7−→
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Loday–Ronco Hopf algebra.

The nth component of YSym has basis the collection of binary
trees with n interior nodes, and thus n + 1 leaves, denoted Yn.
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Loday–Ronco Hopf algebra.

The nth component of YSym has basis the collection of binary
trees with n interior nodes, and thus n + 1 leaves, denoted Yn.

Here is the coproduct:

∆ = + +
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Here is how to multiply two trees:

= + + +
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Our cast as species.
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Species.

A species is an endofunctor of Finite Sets with bijections.

• Example: The species L of lists takes a set to linear orders of
that set.

L({a, d , h}) = { a<d<h, a<h<d , h<a<d , h<d<a, d<a<h, d<h<a }

• Example: The species Y of binary trees takes a set to trees
with labeled leaves.

Y({a, d, h}) = {       ,       , ... ,       ,       , ...}
a  d  h a  h  d a  d  h a  h  d
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Species composition.

We define the composition of two species:

(G ◦ H)(U) =
⊔
π

G(π)×
∏

Ui∈π
H(Ui )

where the union is over partitions of U into any number of
nonempty disjoint parts.

π = {U1,U2, . . . ,Un} such that U1 t · · · t Un = U.

Familiar(?): also known as the cumulant formula, and the moment
sequence of a random variable, and the domain for operad
composition:

γ : F ◦ F → F
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Ordered tree of trees: indelible grafting.

Example:
(S ◦ Y)({a, b, c, d , e, f , g , h, i , j , k}) =

labeled trees

ordered tree

b          a   c     d   e   f      h   g     j    i     k 

          { . . . ,                                                                                                            , . . . }  =     {                         }  

The graft is indelible! We will focus on the structure type,
forgetting the labels.
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Example: S ◦ Y in 3d.
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Composition of coalgebras

Given two graded coalgebras we combine them in a way
reminiscent of species composition.

Let C and D be two graded coalgebras. We will form a new
coalgebra E = D ◦ C on the vector space

D ◦ C :=
⊕

n≥0

Dn ⊗ C⊗(n+1) .
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Example

By construction, the basis for a composition of coalgebras is
indexed by the types of the composition of the species.

SSym ◦ YSym =

     trees

ordered tree          { . . . ,                                                                                                            , . . . }  =                                 {                         }  

span span

Stefan Forcey, Aaron Lauve, Frank Sottile, Trees and polytopes.



Finally: results.
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Results:

Given composed coalgebras E = C ◦ D,
Theorem If C and D are cofree coalgebras then so is E . Primitives are

easy to compute.

Theorem If either C or D is a Hopf algebra with a special connection to
E , then E is a (one sided) Hopf algebra too. Antipodes are
found recursively.

Conj. If Cn and Dn index vertices of polytopes, so does En.
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Examples from trees.

Here is an example of the coproduct in YSym ◦ YSym:

∆ =
+ + +

Here is an example of the product in YSym ◦ YSym:

= + + +
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Composing species of trees.

S ◦S

zzttttttttt

%%JJJJJJJJJ

Y ◦S

zzuuuuuuuuu

$$JJJJJJJJJ S ◦ Y

zzttttttttt

$$IIIIIIIII

C ◦S

$$IIIIIIIII Y ◦ Y

zzttttttttt

$$JJJJJJJJJ S ◦ C

zzuuuuuuuuu

C ◦ Y

%%JJJJJJJJJ Y ◦ C

zzttttttttt

C ◦ C
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Polytope conjecture.

J

CKK

JG
d
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S ◦ C
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S ◦ C

This polytope has been seen before!
Stellohedron (S. Devadoss, A. Postnikov, V. Reiner, L. Williams).

Number of vertices =
n∑

k=0

n!

k!
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Thanks!

Questions and comments?
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