Composing species and composing coalgebras.

Stefan Forcey, U. Akron
Aaron Lauve, Loyola U. Chicago
Frank Sottile, Texas A\&M U.

September 8, 2011

Stefan Forcey, Aaron Lauve, Frank Sottile,

Our slogan.

"Niceness is hereditary in species."

Our slogan.

"Niceness is hereditary in species."

For this talk, nice properties of species of coalgebras will be:

1. Cofree-ness,
2. Hopf-ness,
3. Polytopal-ness.

But first, our cast of characters:

Ordered trees \mathfrak{S}.

Ordered trees \mathfrak{S}.

Ordered trees are permutations \mathfrak{S}_{n}.

Binary trees \mathcal{Y}.

Combed binary trees \mathfrak{C}.

Our cast as Polytopes.

S : Permutohedron.

Tonks cellular projection.

$\mathcal{Y}:$ Associahedron

Our cast as graded Hopf algebras.

A Hopf algebra of binary trees.

Two operations on trees: splitting

\xrightarrow{r}

Y,

A Hopf algebra of binary trees.

Two operations on trees: splitting

$\xrightarrow{r}(\gg$,

and grafting:

Loday-Ronco Hopf algebra.

The $n^{\text {th }}$ component of \mathcal{Y} Sym has basis the collection of binary trees with n interior nodes, and thus $n+1$ leaves, denoted \mathcal{Y}_{n}.

Loday-Ronco Hopf algebra.

The $n^{\text {th }}$ component of \mathcal{Y} Sym has basis the collection of binary trees with n interior nodes, and thus $n+1$ leaves, denoted \mathcal{Y}_{n}.

Here is the coproduct:
Δ
$=$

Loday-Ronco Hopf algebra.

The $n^{\text {th }}$ component of \mathcal{Y} Sym has basis the collection of binary trees with n interior nodes, and thus $n+1$ leaves, denoted \mathcal{Y}_{n}.

Here is the coproduct:
$\Delta Y=1 \otimes Y+Y \otimes Y \otimes 1$

Here is how to multiply two trees:

Loday-Ronco Hopf algebra.

The $n^{\text {th }}$ component of \mathcal{Y} Sym has basis the collection of binary trees with n interior nodes, and thus $n+1$ leaves, denoted \mathcal{Y}_{n}.

Here is the coproduct:

Here is how to multiply two trees:

Loday-Ronco Hopf algebra.

The $n^{\text {th }}$ component of \mathcal{Y} Sym has basis the collection of binary trees with n interior nodes, and thus $n+1$ leaves, denoted \mathcal{Y}_{n}.

Here is the coproduct:

Here is how to multiply two trees:

Our cast as species.

Species.

A species is an endofunctor of Finite Sets with bijections.

- Example: The species \mathcal{L} of lists takes a set to linear orders of that set.

$$
\mathcal{L}(\{a, d, h\})=\{a<d<h, a<h<d, h<a<d, h<d<a, d<a<h, d<h<a\}
$$

- Example: The species \mathcal{Y} of binary trees takes a set to trees with labeled leaves.

$$
\mathcal{Y}(\{a, d, h\})=\left\{Y^{a d}, Y^{a^{h} d}, \ldots, Y^{a d}, Y^{a^{h}}, \ldots\right\}
$$

Species composition.

We define the composition of two species:

$$
(\mathcal{G} \circ \mathcal{H})(U)=\bigsqcup_{\pi} \mathcal{G}(\pi) \times \prod_{U_{i} \in \pi} \mathcal{H}\left(U_{i}\right)
$$

where the union is over partitions of U into any number of nonempty disjoint parts.

$$
\pi=\left\{U_{1}, U_{2}, \ldots, U_{n}\right\} \text { such that } U_{1} \sqcup \cdots \sqcup U_{n}=U
$$

Familiar(?): also known as the cumulant formula, and the moment sequence of a random variable, and the domain for operad composition:

$$
\gamma: \mathcal{F} \circ \mathcal{F} \rightarrow \mathcal{F}
$$

Ordered tree of trees: indelible grafting.

Example:

$$
(\mathfrak{S} \circ \mathcal{Y})(\{a, b, c, d, e, f, g, h, i, j, k\})=
$$

The graft is indelible! We will focus on the structure type, forgetting the labels.

Example: $\mathcal{S} \circ \mathcal{Y}$ in 3d.

Example: $\mathfrak{S} \circ \mathcal{Y}$ in 3d.

Example: $\mathfrak{S} \circ \mathcal{Y}$ in 3d.

Composition of coalgebras

Given two graded coalgebras we combine them in a way reminiscent of species composition.

Let \mathcal{C} and \mathcal{D} be two graded coalgebras. We will form a new coalgebra $\mathcal{E}=\mathcal{D} \circ \mathcal{C}$ on the vector space

$$
\mathcal{D} \circ \mathcal{C}:=\bigoplus_{n \geq 0} \mathcal{D}_{n} \otimes \mathcal{C}^{\otimes(n+1)}
$$

Example

By construction, the basis for a composition of coalgebras is indexed by the types of the composition of the species.

$$
\mathfrak{S S y m} \circ \mathcal{Y S y m}=
$$

Finally: results.

Results:

Given composed coalgebras $\mathcal{E}=\mathcal{C} \circ \mathcal{D}$,
Theorem If \mathcal{C} and \mathcal{D} are cofree coalgebras then so is \mathcal{E}. Primitives are easy to compute.

Theorem If either \mathcal{C} or \mathcal{D} is a Hopf algebra with a special connection to \mathcal{E}, then \mathcal{E} is a (one sided) Hopf algebra too. Antipodes are found recursively.

Conj. If \mathcal{C}_{n} and \mathcal{D}_{n} index vertices of polytopes, so does \mathcal{E}_{n}.

Examples from trees.

Here is an example of the coproduct in $\mathcal{Y S y m} \circ \mathcal{Y}$ Sym:

Here is an example of the product in \mathcal{Y} Sym $\circ \mathcal{Y}$ Sym:

Composing species of trees.

Polytope conjecture.

$\mathfrak{S o C}$

$\mathfrak{S o C}$

$\mathfrak{S} \circ \mathfrak{C}$

This polytope has been seen before!
Stellohedron (S. Devadoss, A. Postnikov, V. Reiner, L. Williams).

Number of vertices $=\sum_{k=0}^{n} \frac{n!}{k!}$

Thanks!

Advertisement:
http://www.math.uakron.edu/~sf34/hedra.htm Questions and comments?

