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Abstract. We develop the notion of the composition of two coalgebrasiclv arises naturally in higher category
theory and the theory of species. We prove that the compaosifitwo cofree coalgebras is cofree and give conditions
which imply that the composition is a one-sided Hopf algeBitzese conditions hold when one coalgebra is a graded
Hopf operadD and the other is a connected graded coalgebra with coalgepaoD. We conclude with examples

of these structures, where the factor coalgebras have bat®sd by the vertices of multiplihedra, composihedra,
and hypercubes.

Résumre.Nous développons la notion de la composition de deux ebaés, qui apparait naturellement dans la theorie
de catégorie plus élevées et de la théorie des espioeis. montrons que la composition de deux coalgebres eolibr
est colibre et nous donnons des conditions qui impliqueet@eomposition est une algébre de Hopf unilatérale. Ces
conditions sont valables quand une des coalgebres estp@nade de Hopf gradué&® et I'autre est une coalgébre
graduée connexe avec un morphisme coalgél#fe ANous concluons avec des exemples de ces structures, ou les
coalgébres composées ont des bases indexées par legtodenmultiplihédra, composihédra, et hypercubes.
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1 Introduction

The Hopf algebras of ordered trees (Malvenuto and Reuterfa@@5)) and of planar binary trees (Loday
and Ronco (1998)) are cofree coalgebras that are connegteellblar maps from permutahedra to as-
sociahedra. Related polytopes include the multiplihe8tagheff (1970)) and the composihedra (Forcey
(2008b)), and it is natural to study what Hopf structures faylaced on these objects. The map from
permutahedra to associahedra factors through the mhéiiia, and in (Forcey et al. (2010)) we used this
factorization to place Hopf structures on bi-leveled tredsich correspond to vertices of multiplihedra.

Multiplihedra form an operad module over associahedras THads to painted trees, which also corre-
spond to the vertices of the multiplihedra. In terms of padntrees, the Hopf structures of (Forcey et al.
(2010)) are related to the operad module structure. We gérethis in Section 3, defining the functorial
construction of a graded coalgelfa C from graded coalgebra@sandD. We show that this composition
of coalgebras preserves cofreeness. In Section 4 we gifieisnt conditions, whef® is a Hopf algebra,
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for the composition of coalgebrd3 o C (andC o D) to be a one-sided Hopf algebra. These conditions
also guarantee that a composition is a Hopf module and a comathebra oveD.

This composition (also known as substitution) is famili@mh the theories of operads and species. If a
species is a monoid with respectddhen it is also an operad (Aguiar and Mahajan, 2010, App. 1B). |
Section 4 we show that an oper®&dbf connected graded coalgebras is automatically a Hopbadge

We discuss three examples related to well-known objects frategory theory and algebraic topology
and show that the Hopf algebra of simplices of (Forcey anihgfield (2010)) is cofree as a coalgebra.

2 Preliminaries

We work over a fixed fiel& of characteristic zero. For a graded vector spece- ,, V;,, we write
|v| = n and say hasdegreen if v € V;,.

2.1 Hopf algebras and cofree coalgebras

A coalgebraC is a vector spac€ equipped with a coassociative coproduct C — C ® C and counit
e: C = K. Forc € C,write A(c) as} ., ¢’ @ ¢”. Coassociativity means that

Z (CI)/ ® (C/)// ® C// _ Z C/ ® (C//)/ ® (C//)// _ Z C/ ® C// ® CHI,
(e),(¢") (e),(c") (c)

and the counital condition reads ., £(c')c” = _ ) c’e(¢”) = c. A Hopf algebra is a unital associative
algebraH thatis also a coalgebra whose structure maps (coprdsiaod counit) are algebra homomor-
phisms, with the additional condition of having an antipo8ee (Montgomery (1993)) for more details.
Takeuchi (1971) showed that a graded bialgetira: (P,,~, Hn, -, A, €) that is connectedH, = K) is
a Hopf algebra. Aone-sidedHopf algebral = (H,u,m, A, ¢, S) is allowed to have only a one-sided
unitu and to satisfy only one ofi(S ® 1)A = ue andm(1® S)A = ue. This relaxes the standard notion
appearing in the literature (Green et al. (1980)), wherg tre antipode is allowed to be one-sided.
Thegraded cofree coalgebran a vector spac¥ is C(V) := @,,, V" with counit the projection
e: C(V) — K = V®Y and thedeconcatenation coproduatriting “\” for the tensor product i ®", we
have

n

Aler\ - \en) = Y (er\ - \ei) @ (cirr\ - \ew).

=0
Observe thal” is the set of primitive elements @f(V'). A graded coalgebr@ is cofreeif C ~ C(Fe),
whereF; is the space of primitive elements ©f Many coalgebras arising in combinatorics are cofree.

2.2 Cofree Hopf algebras on trees

We describe three cofree Hopf algebras built on rooted plinary treesordered treess,,, binary trees
V., and(left) combst,, onn internal nodes. Sé&b, := Un20 &,, and defing). and¢, similarly.

2.2.1 Constructions on trees

The nodes of a tree € ), form a poset. Arordered treew = w(t) is a linear extension of this node
poset oft. This linear extension is indicated by placing a permutatiothe gaps between its leaves,
which gives a bijection between ordered trees and pernoatatiThe map: &,, — ), sends an ordered
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treew(t) to its underlying tree. The mapx: V,, — €, shifts all nodes of a tree to the right branch from
the root. Set5, = )y = ¢, = |. Note thaf¢,,| = 1 foralln > 0.

3412
2413
NS4 N T
ordered treess, L» binary trees), L» left combs¢,

Splitting an ordered treev along the path from a leaf to the root yields an ordered fomekere the
nodes in the forest are totally ordered) or a pair of ordeneekt,

251*43 251‘43

P (B ) ()

Write w — (wp, w1) when the ordered forestvy, wy) (or pair of ordered trees) is obtained by splitting
w. (Context will determine how to interpret the result.)

We maygraftan ordered forest = (wy, ..., w,) onto an ordered tree € &,,, obtaining the tree’ /v
as follows. First increase each labelo$o that its nodes are greater than the nodes, @nd then graft
treew; onto thei'" leaf ofv. For example,

1432
1 3

if (,v) = <({; I§y§(¢)\y>

32811 751,10 6,94

thenw /v =

Splitting and grafting make sense for tree)in They also work fore, if, after grafting a forest of
combs onto the leaves of a comb, one appli¢és the resulting planar binary tree to get a new comb.

2.2.2 Three cofree Hopf algebras

Let SSym = @,,~, ©Sym,, be the graded vector space whogé graded piece has basi#’, | w €
S, }. DefineySym and €Sym similarly. The set maps andx induce vector space mapsandx,
T(Fy) = Frw) ands(Fy) = F4). FixX € {6,), ¢}, Forw € X, andv € X,,, set
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F’w 'FU = Z F(u)g ..... Wy) /v

v
w—(Wo -+, Wn)

the sum over all (ordered) forests obtained by splittingt a multiset of: leaves. Forw € X., set

A(Fy) = Y, Fuy®Fy,,
wL(wg,wl)

the sum over all splittings ofs at one leaf. The counit is the projection onto thé'* graded piece,
spanned by the unit element= F'| for the multiplication.

Proposition 2.1 For (A, -, ) above& Sym is the Malvenuto—Reutenauer Hopf algebra of permutations,
YSym is the Loday—Ronco Hopf algebra of planar binary trees, a@sym is the divided power Hopf
algebra. MoreoverS Sym — Y Sym and) Sym —~+ ¢Sym are surjective Hopf algebra maps. O

The part of the proposition involving Sym and) Sym is found in (Aguiar and Sottile (2005, 2006));
the part involvingg Sym is straightforward and we leave it to the reader.

Typically (Montgomery, 1993, Ex 5.6.8), the divided poweog algebra is defined to b&[z] :=
span{z(™ | n > 0}, with basis vectors(™ satisfyingz(™) . z(") = (") g(m+n) 1 = 20 A(z(M)) =
Yitjon oW @ 2U), ande(2(™) = 0 for n > 0. Anisomorphism betweek[x] and€Sym is given by
™ — F,. , wherec, is the unique comb iK,,.

Proposition 2.2 The Hopf algebras$ Sym, Y Sym, and€Sym are cofree as coalgebras. The primitive
elements o) Sym and€Sym are indexed by trees with no nodes off the right branch froardlot. O

The result for€ Sym is easy. Proposition 2.2 is proven férSym and ) Sym in (Aguiar and Sottile
(2005, 2006)) by performing a change of basis—fromftiredamental basi¢’, to themonomial basis
M,,—by means of Mobius inversion in a poset structure place&oand). .

3 Constructing Cofree Compositions of Coalgebras
3.1 Cofree compositions of coalgebras
LetC andD be graded coalgebras. Form a new coalgébtaD o C on the vector space

DoC = @D, wco". (3.1)
n>0

WhenC andD are spaces of rooted, planar trees we may interpireterms of a rule for grafting trees.

Example 3.1 Suppos€ = D = Y Sym and letd x (co, ..., c,) € Y, x (V."*1). Defineo by attaching
the forest(cy, . . ., ¢, ) to the leaves ofl while remembering, giving apainted treg

Vx(V,I,V,Y,I) =
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We represent an indecomposable tensét ia= D o C as
do (CO ..... Cn) or

Thedegreeof such an element igl| + |co| + - - - + |cn|. Write &, for the span of elements of degree

3.1.1 The coalgebra Do C

We define theeompositional coproduch for D o C on indecomposable tensors]df = n, put

..... n g el ! Cigqe e Cn
A(CO v C ) _ 222C0 d/c 1C1®Cl C+(1:i” C - (32)
o Id('c\l)—' o

Thecounite : Do C — Kis given bys(do (cp+- -+ cn)) =ep(d) - [ ecle)).
For the painted trees of Example 3.1, if thendd are elements of thE-basis, thed\ (d o (cp- - - - - cn))
is the sum over all splittings— (¢',¢") of t into a pair of painted trees.

Theorem 3.2 (DoC, A, ¢) is a coalgebra. This composition is functorial, i.eif C — C" andy: D —
D’ are morphisms of graded coalgebras, then

defines a morphism of graded coalgebas): Do C — D' o C'.

3.1.2 The cofree coalgebra Do C

Suppose that andD are graded, connected, and cofree. Thea C(P¢), whereP C C is its space of
primitive elements. Likewise) = C(Pp), wherePp C D is its space of primitive elements.

Theorem 3.3 If C and D are cofree coalgebras the® o C is also a cofree coalgebra. Its space of
primitive elements is spanned by indecomposible tensdredbrm

i
3 and R (3.3)

wherey, ¢; € C andd € D,,, with~ and¢ primitive.

Example 3.4 The graded Hopf algebras of ordered tréesym, planar tree§’Sym, and divided powers
¢Sym are all cofree, and so their compositions are cofree. We thevsurjective Hopf algebra maps

SSym — YSym = €Sym

giving the commutative diagram of Figure 1 of nine cofreelgelras as the compositieris functorial.
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G Sym o GSym

/N

GSym o YSym  YSym o &Sym

SN N

GSym o €Sym  YSymo YSym  €Sym o &Sym
YSym o €Sym ESym o Y Sym
ESym o ESym

Fig. 1: A commutative diagram of cofree compositions of coalgebras

3.2 Some enumeration
Set€ := Do C and letC,, andE,, be the dimensions af,, and&,,, respectively.

Theorem 3.5 WhenD,, has a basis indexed by combs witlinternal nodes we have the recursion
n—1
Ey =1, andforn>0, E, = C, + ZCiEn,i,l.
1=0
Proof: The first term counts elements &), of the form| o ¢. Removing the root node af from
do(cor---- k) gives a pairlo (¢o) andd’ o (¢ -+ - - ¢r) with ¢ € C;, whose dimensions are enumer-
ated by the terms of the sum. |

For combs over a comli;,, = 2", for trees over a comldy,, are the Catalan numbers, and for permu-
tations over a comb, we have the recursion

n—1
Ey =1, andforn>0, E, = n!—l—Zi!En_i_l,
1=0

which beginsl, 2, 5,15, 54,235, ..., and is sequence A051295 of the OEIS (Sloane). Similarly,
Theorem 3.6 WhenD,, has a basis indexed 1}, then we have the recursion

n—1
Ey =1, andforn>0, E, = C,+ ZEiEn—i—l .
=0
For example, the combs over a tree are enumerated by theyltraasform of the Catalan numbers
(Forcey (2008b)). The trees over a tree are enumerated ydtadan transform of the Catalan numbers
(Forcey (2008a)). The permutations over a tree are enuatebgtthe recursion
n—1
Ey =1, andforn>0, E, =nl+Y EFE, .,
1=0
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which beginsl, 2, 6,22,92,428, ... and is not a recognized sequence in the OEIS (Sloane). Wetdo no
have attractve recursive formulas whHBp has a basis indexed I&y,,.

4 Composition of Coalgebras and Hopf Modules

We give conditions that imply a composition of coalgebras @e-sided Hopf algebra, interpret this via
operads, and then investigate which compositions of Fige bae-sided Hopf algebras.

4.1 Module coalgebras

Let D be a connected graded Hopf algebra with produsgt, coproductAp, and unit elementp.

Amapf : £ — D of graded coalgebras iscannectioron D if £ is aD-module coalgebrg, is a map
of D-module coalgebras, ardtlis connected. This means tltats an associative (left or righfp-module
whose action (denoteg commutes with the coproducts, so tist (e x d) = Ag(e) * Ap(d), fore € €
andd € D, andthe coalgebra map is also a module map, so that foe £ andd € D we have

(f@f)Ae(e) = Ap fle) and  flexd) = mp(f(e) @ d).

Theorem 4.1 If £ is a connection oD, thené is also a Hopf module and a comodule algebra aiert
is also a one-sided Hopf algebra with right-sided unit:= f~1(1p) and left-sided antipode.

Proof: Supposef is a rightD-module. Define the productes : £ ® £ — £ via theD-action: mg :=
*o (1 ® f). The one-sided unitise. ThenA¢ is an algebra map. Indeed, fare’ € £, we have

Ag(e . 6’) = Ag(e* f(@l)) = Age* Apf(e/) = Age* (f ® f)(Agel) = Age . Agel .
As usualgg is just projection ont@,. The unitl¢ is one-sided, since
e-lg = exf(lg) = ex f(fH(1lp)) = exlp = e,

butle - e = 1¢ x f(e) is not necessarily equal to The antipodeS may be defined recursively to satisfy
me(S ® 1)Ag = eg¢, just as for graded bialgebras with two-sided units.

Definep: £ - E@Dbyp:= (1® f)Ag, which gives a coaction so thétis a Hopf module and a
comodule algebra ovép. O

4.2 Operads and operad modules

Composition of coalgebras is the same product used to dgfi@eds internal to a symmetric monoidal
category (Aguiar and Mahajan, 2010, App. B)#onoidin a category with a produetis an objectD
with a morphismy: D e D — D that is associative. Aoperadis a monoid in the category of graded sets
with an analog of the composition productlefined in Section 3.1.

Connected graded coalgebras form a symmetric monoidajaatender the compositionof coalge-
bras. Agraded Hopf opera® is a monoid in this monoidal category of connected gradetijebaas and
coalgebra maps. That i® is equipped with associative composition maps

v:DoD — D, obeying Apy(a) = (y®7) (Apop(a)) forall a e DoD.

A graded Hopf operad modulé is an operad module ovéP and a graded coassociative coalgebra
whose module action is compatible with its coproduct. Weaodierthe left and right action maps by
Do — Eandu, : £oD — &, obeying, e.9.Ag i (b) = (pr @ pr)Agopbforallb € £oD.
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Example 4.2 Y Sym is an operad in the category of vector spaces. The actigroofF; o (Fy,-- - - - )
grafts the treegy, . . ., ¢, onto the tre¢ and, unlike in Example 3.1, forgets which nodes of the rasylt
tree came from. This is associative in the appropriate sense. With the sg&ym is an operad in the
category of connected graded coalgebras, making it a giddpéioperad. Finally, operads are operad
modules over themselves, 3tbym is also a graded Hopf operad module.

Remark 4.3 Our graded Hopf operads differ from those of Getzler and gomko defined a Hopf operad
to be an operad dével coalgebraswhere each componefy, is a coalgebra.

Theorem 4.4 A graded Hopf opera® is also a Hopf algebra with product
a-b = ybeAMq) (4.2)

whereb € D,, andA(™ is the iterated coproduct fror®® to D®(+1),

It is possible to swap the roles afandb on the right-hand side of (4.1). Our choice agrees with the
productin) Sym and€Sym. In fact, the well-known Hopf algebra structure)a$ym and€Sym follow
from their structure as graded Hopf operads.

Lemma 4.5 If C is a graded coalgebra an® is a graded Hopf operad, theR o C is a (left) graded Hopf
operad module and o D is a (right) graded Hopf operad module.

Lemma 4.6 A graded Hopf operad module over a graded Hopf operad is alsmdule coalgebra.
Theorem 4.7 Given a coalgebra map: C — D from a connected graded coalgeldo a graded Hopf
operadD ,the mapsgyo (loA): DoC — Dandyo (Aol): CoD — D give connections of.

4.3 Examples of module coalgebra connections

Eight of the nine compositions of Example 3.4 are connest@mone or both of the facto€sandD.

Theorem 4.8 For C € {&Sym, Y Sym, €Sym}, the coalgebra compositiortso €Sym and €Sym o C
are connections o .Sym. For C € {&Sym, Y Sym, €Sym}, the coalgebra compositiodso Y Sym and
YSym o C are connections opy.Sym.

Note that&Sym o Y Sym is a connection on botlSym and on) Sym, which gives two distinct
one-sided Hopf algebra structures. Similagi§ym o Y Sym is a connection 03/ Sym in two distinct
ways (again leading to two distinct one-sided Hopf struegir We do not know it5.Sym o GSym is a
connection ove6 Sym.

5 Three Examples

The three underlined algebras in Example 3.4 arose prdyioualgebra, topology, and category theory.

5.1 Painted Trees

A painted binary tred@s a planar binary treg together with a (possibly empty) upper order ideal of its
node poset. We indicate this ideal by painting on top of agegmtation of, as in Example 3.1 and below,

22 2
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An A, -spaceis a topologicalH-space with a weakly associative multiplication of poingasheff
(1963)). Stasheff (1970) described these maps using celpaxes called multiplihedra, while Board-
man and Vogt (1973) used spaces of painted trees. Both tltespétrees and the cell complexes are
homeomorphic to convex polytope realizations of the mliftgzlra as shown in (Forcey (2008a)).

If f: (X,e) — (Y,%)is a map ofA,-spaces, then the different ways to multiply and mapoints
of X are represented by a painted tree. Unpainted nodes arelicaliions in X, painted nodes are
multiplications inY’, and the beginning of the painting indicates tlfias applied to a given point itX,

fa) % (flbec) * f(d) +— v

5.1.1 Algebra structures on painted trees.

LetP,, be the poset of painted treeseimternal nodes, with partial order inherited from the idfécdtion
with the poseiM,, ., of bi-leveled trees (i.e., the multiplihedron). Forcey ke{2010) studied this order.
We describe the key definitions of Section 3.1 and Sectiorr £foym := Y Sym o Y Sym. In the

fundamental basi$F, | p € P. } of PSym , the counitis:z(F,) = ||, and the product is given by

A(Fp) = Z Fpy @ Fp,

v
p—(po,p1)

where the painting ip € P, is preserved in the splitting — (po, p1).
For example, we have

A(F\&) = 1®F\& + FY®FY + FY®FY + F\&@l.

The identity map oy Sym makesP.Sym into a connection o) Sym. By Theorem 4.1PSym is
thus also a one-sided Hopf algebray &ym-Hopf module, and @ Sym-comodule algebra. The product
F, - F,inPSymis

By Fy = Z Fpoprepr)fat s

v
P—=(P0,P1;--+,Pr)

where the painting in is preserved in the splittingpo, p1, - - ., p-), andg™ signifies thaty is painted
completely before grafting. For example,

FvF\( = FV/ + FV/ + FV + FW
The painted tregwith 0 nodes is only a right multiplicative identity element,

Fy-Fy = 1 but  Fy-F, = FyforgeP..

As PSym is graded and connected, it has a one-sided antipode.

Theorem 5.1 There are unit and antipode maps K — PSym and S: PSym — PSym making
P Sym a one-sided Hopf algebra.
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The Y Sym-Hopf module structure o® Sym from Theorem 4.1 has coaction

p(Fp) = Z Fpo @ Frpy)

v
p—(po,p1)

where the painting ip is preserved ippg and forgotten ) in p;.
Since painted trees and bi-leveled trees both index verti€¢he multiplihedra, these structures for
PSym give structures on the linear span Sym , of bi-leveled trees with at least one node.

Corollary 5.2 The) Sym action and coaction defined in (Forcey et al., 2010, SectidhdhakeM Sym
into a Hopf module isomorphic to the Hopf mod@&ym. O

5.2 Composite Trees

In a forest of combs attached to a binary tree, the combs maggaced by corollae or by a positive
weightcounting the number of leaves in the comb. These all gpreposite trees

2 3 1 2

= v}/ (5.1)

Composite trees with weights summingite-1, CKC,,, were shown to be the vertices ohadimensional
polytope, thecomposihedronCK(n) (Forcey (2008b)). This sequence of polytopes is used tonpara
terize homotopy maps between strictly associative and hopy@ssociativéd] -spaces. For small values
of n, the polytope€ K (n) appear as the commuting diagrams in enriched bicategéitesdy (2008b)).
These diagrams also appear in the definition of pseudomsagliar and Mahajan, 2010, App. C).

5.2.1 Algebra structures on composite trees

We describe the key definitions of Section 3.1 and Sectionr£f0Sym = YSym o €Sym. In the
fundamental basi$F, | p € CK. } of CKSym, the counitiss(F,) = &y |, and the coproduct is

A(Fp) = Z Fpy @ Fp,

v
p—(po,p1)

where the painting ip € CK. is preserved in the splittingﬁ (po, p1). In the weighted-leaves represen-
tation of composite trees, the effectAfis subtle and best illustrated by an example,

AF212 = L QF212+ F2QF112+ F2 1QF1 2 + F211QF: + F21:20 F1.
B R A S IR

For the product, Theorem 4.1, using the left module coakyabtion defined in Lemma 4.6, gives
F,-F, == g(F,)x Fy, wherea, b € CK., ,

whereg: CKSym — €Sym is the following connection. On the indices, it sends a cositpdreeq to
the unique comlg(a) with the same number of nodesasFor the actior, g(a) is split in all ways to
make a forest ofb|+1 combs, which are grafted onto the leaves of the forest of samh then each tree
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in the forestis combed and attached to the binary trée Wie illustrate one term in the product. Suppose
that

121
a= Y \v andb = : \V Theng(a \P/ One way to spliy(a) gives the forest
132
(1,Y .|, ) Graftthis ontob to get , then comb the forest to get”” , which is
Doing this for the other nine splittings gfa) gives,

Fo1 - Fi210= F3zz1+ 3F141+ Fr23+ 2F231 4+ Faz22 4+ 2F13 2.
Y Y X Y Y 'Y 'Y 'Y

5.3 Composition trees

The simplest composition of Fig. 1 &Sym o €Sym, whose basis is indexed by combs over combs. If
we represent these as weighted trees as in (5.1), we seedhaawidentify combs over combs with
internal nodes as compositionsrof-1. Thus we refer to these asmposition trees

3214
W{:} \>>/<:> (3,2,1,4).

The coproduct is again given by splitting. Since the compmsiree(1, 3) has the four splittings,

NN (Y)Y (YY) e

we haveA(Fi3) =F1 @ Fis+ Fi1 @ Fs+ Fiao @+ Fi3® Fi.

As we remarked, there are two connectiditgym o €Sym — &€Sym, using either the right or left
action of&Sym. This gives two new one-sided Hopf algebra structures onpasitions. With the right
action, we have", 3 - Fo = 2F) 13+ Fi1 22+ Fi 31, as

FY:FVjLFVjLFVjLFV’ (5.3)

which may be seen by grafting the different splittings (®2}o the treef” and coloringy’ ~Y'.

Forcey and Springfield (2010) defined a one-sided Hopf alg&lffym on the graded vector space
spanned by the faces of the simplices. Faces of the simglim@sspond to subsets pf]. Here is an
example of the coproduct on the basis element corresporndifity} C [4], where subsets df:| are
illustrated as circled subsets of the circled edgelessgoap nodes numbered left to right:

AT D = O8@ D+ @8C D + @DECD + @ 0o + @080

Here is an example of the product

OE D=0 D+@e-H+@-0H+0@- -®.

Let ¢ denote the bijection between subséts- {a,b,... ¢} C [n] and compositions(S) = (a,b —
a,...,n+1—c¢)ofn+ 1. Applying this bijection the indices of their fundamentaldes gives a linear
isomorphismp: ASym — €Sym o €Sym, which is nearly an isomorphism of one-sided Hopf algebras,
as may be seen by comparing these schematics of operatidaSijm to formulas (5.2) and (5.3) in
ESym o ESym.
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Theorem 5.3 The mapy is an isomorphism of coalgebras and an anti-isomorphigttu( b) = ¢(b) -
(a)) of one-sided algebras.

Corollary 5.4 The one-sided Hopf algebra of simplices introduced in (Bgrand Springfield (2010)) is
cofree as a coalgebra.
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