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COFREE COMPOSITIONS OF COALGEBRAS

STEFAN FORCEY, AARON LAUVE, AND FRANK SOTTILE

Abstract. We develop the notion of the composition of two coalgebras, which arises
naturally in higher category theory and in the theory of species. We prove that the
composition of two cofree coalgebras is again cofree, and we give sufficient conditions
that ensure the composition is a one-sided Hopf algebra. We show these conditions are
satisfied when one coalgebra is a graded Hopf operad D and the other is a connected
graded coalgebra with coalgebra map to D. We conclude by computing the prim-
itive elements for compositions of coalgebras built on the vertices of multiplihedra,
composihedra, and hypercubes.

Introduction

The Malvenuto-Reutenauer Hopf algebra of ordered trees [12, 2] and the Loday-Ronco
Hopf algebra of planar binary trees [11, 3] are cofree as coalgebras and are connected
by cellular maps from the permutahedra to the associahedra. Closely related polytopes
include Stasheff’s multiplihedra [16] and the composihedra [7], and it is natural to
study to what extent Hopf structures may be placed on these objects. The map from
permutahedra to associahedra factors through the multiplihedra, and in [8] we used this
factorization to place Hopf structures on bi-leveled trees, which correspond to vertices
of multiplihedra.

The multiplihedra form an operad module over the associahedra, and this leads to
the concept of painted trees, which also correspond to the vertices of the multiplihedra.
Moreover, expressing the Hopf structures of [8] in terms of painted trees relates these
Hopf structures to the operad module structure. Abstracting this structure leads to
the general notion of a composition of coalgebras, which is a functorial construction of
a graded coalgebra D ◦ C from graded coalgebras C and D. We define this composition
in Section 2 and show that it preserves cofreeness. In Section 3, we suppose that D is
a Hopf algebra and give sufficient conditions for the compositions of coalgebras D ◦ C
and C ◦D to be one-sided Hopf algebras. These also guarantee that these compositions
are Hopf modules and comodule algebras over D.

The definition of the composition of coalgebras is familiar from the theory of operads.
In general, a (nonsymmetric) operad is a monoid in the category of graded sets, with
product given by composition (also known as the substitution product). In Section 3
we show that an operad D in the category of connected graded coalgebras is automat-
ically a Hopf algebra. Those familiar with the theory of species will also recognize our
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construction. The coincidence is explained in [1, Appendix B]: species and operads are
one-and-the-same.

We conclude in Sections 4, 5, and 6 with a detailed look at several compositions of
coalgebras that enrich the understanding of well-known objects from category theory
and algebraic topology. In particular, we prove that the (one sided) Hopf algebra of
simplices in [9] is cofree as a coalgebra.

1. Preliminaries

We work over a fixed field K of characteristic zero. For a graded vector space V =
⊕

n Vn, we write |v| = n and say v has degree n if v ∈ Vn.

1.1. Hopf algebras and cofree coalgebras. A bialgebra H is a unital associative
algebra equipped with two algebra maps: a coproduct homomorphism ∆: H → H ⊗H
that is coassociative and a counit homorphism ε : H → K which plays the role of the
identity for ∆. See [13] for more details. A graded bialgebra H = (

⊕

n≥0Hn, ·,∆, ε) is
connected if H0 = K. In this case, a result of Takeuchi [17, Lemma 14] guarantees the
existence of an antipode map for H , making it a Hopf algebra.

We recall Sweedler’s coproduct notation for later use. A coalgebra C is a vector space
C equipped with a coproduct ∆ and counit ε. Given c ∈ C, the coproduct ∆(c) is
written

∑

(c) c
′ ⊗ c′′. Coassociativity means that

∑

(c),(c′)

(c′)′ ⊗ (c′)′′ ⊗ c′′ =
∑

(c),(c′′)

c′ ⊗ (c′′)′ ⊗ (c′′)′′ =
∑

(c)

c′ ⊗ c′′ ⊗ c′′′ ,

and the counit condition means that
∑

(c) ε(c
′)c′′ =

∑

(c) c
′ε(c′′) = c.

The cofree coalgebra on a vector space V has underlying vector space C(V ) :=
⊕

n≥0 V
⊗n. Its counit is the projection ε : C(V ) → K = V ⊗0. Its coproduct is the

deconcatenation coproduct: writing “\” for the tensor product in V ⊗n, we have

∆(c1\ · · · \cn) =

n
∑

i=0

(c1\ · · · \ci)⊗ (ci+1\ · · · \cn) .

Observe that V is exactly the set of primitive elements of C(V ). A coalgebra C is
cofreely cogenerated by a subspace V ⊂ C if C ≃ C(V ) as coalgebras. Necessarily, V is
the space of primitive elements of C. Many of the coalgebras and Hopf algebras arising
in combinatorics are cofree. We recall a few key examples.

1.2. Cofree Hopf algebras on trees. We describe three cofree Hopf algebras built
on rooted planar binary trees: ordered trees Sn, binary trees Yn, and (left) combs Cn

on n internal nodes. Let S· denote the union
⋃

n≥0Sn and define Y· and C· similarly.

1.2.1. Constructions on trees. The nodes of a tree t ∈ Yn are a poset (with root max-
imal) whose Hasse diagram is the internal edges of t. An ordered tree w = w(t) is a
linear extension of this node poset of t that we indicate by placing a permutation in
the gaps between its leaves. Ordered trees are in bijection with the permutations of n.
The map τ : Sn → Yn forgets the total ordering of the nodes of an ordered tree w(t)
and gives the underlying tree t. The map κ : Yn → Cn shifts all nodes of a tree t to the
right branch from the root. We let S0 = Y0 = C0 = . Note that |Cn| = 1 for all n ≥ 0.
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Figure 1 gives some examples from S·, Y·, and C· and indicates the natural maps τ

and κ between them. See [8] for more details.

ordered trees S·

1

2 1

1 2

3 4 1 2

2 4 1 3

1 4 2 3

-
τ

-

-

-

-

binary trees Y· -
κ

-

-

-

left combs C·
Figure 1. Maps between binary trees.

Splitting an ordered tree w along the path from a leaf to the root yields an ordered
forest (where the nodes in the forest are totally ordered) or a pair of ordered trees,

2 5 1 4 3?

 

2 5 1 4 3?

g
−−→

(

2 5 1

,

4 3
)

or

(

2 3 1

,

2 1
)

.

Write w
g
→ (w0, w1) when the ordered forest (w0, w1) (or pair of ordered trees) is

obtained by splitting w. (Context will determine how to interpret the result.)
We may graft an ordered forest ~w = (w0, . . . , wn) onto an ordered tree v ∈ Sn,

obtaining the tree ~w/v as follows. First increase each label of v so that its nodes are
greater than the nodes of ~w, and then graft tree wi onto the ith leaf of v. For example,

if (~w, v) =

(

(

3 2

, ,

7 5 1

,
6

,
4

)

,

1 4 3 2 )

,

then ~w/v =

3 2

8 11

7 5 1

10

6

9

4

=

3 2 8 11 7 5 1 10 6 9 4

.
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The notions of splitting and grafting make sense for trees in Y· (simply forget the

labels on the nodes). They also work for C·, if after grafting a forest of combs onto the
leaves of a comb, κ is applied to the resulting planar binary tree to get a new comb.

1.2.2. Three cofree Hopf algebras. Let SSym :=
⊕

n≥0SSymn be the graded vector

space whose nth graded piece has basis {Fw | w ∈ Sn}. Define YSym and CSym

similarly. The set maps τ and κ induce vector space maps τ and κ, τ (Fw) = Fτ(w) and
κ(Ft) = Fκ(t). Fix X ∈ {S,Y ,C}. For w ∈ X· and v ∈ Xn, set

Fw · Fv :=
∑

w
g

→(w0,...,wn)

F(w0,...,wn)/v ,

the sum over all ordered forests obtained by splitting w at a multiset of n leaves, and

∆(Fw) :=
∑

w
g

→(w0,w1)

Fw0
⊗ Fw1

,

the sum over pairs of trees obtained by splitting w at one leaf. The counit ε is pro-
jection onto the 0th graded piece, which is spanned by the unit element 1 = F for the
multiplication.

Proposition 1.1. For (∆, ·, ε) above, SSym is the Malvenuto–Reutenauer Hopf algebra
of permutations, YSym is the Loday–Ronco Hopf algebra of planar binary trees, and
CSym is the divided power Hopf algebra. Moreover, SSym

τ

−→ YSym and YSym
κ

−→
CSym are surjective Hopf algebra maps. �

The part of the proposition involving SSym and YSym is found in [2, 3]; the part
involving CSym is straightforward and we leave it to the reader.

Remark 1.2. Typically [13, Example 5.6.8], the divided power Hopf algebra is defined
to be K[x] := span{x(n) | n ≥ 0}, with basis vectors x(n) satisfying x(m) · x(n) =
(

m+n
n

)

x(m+n), 1 = x(0), ∆(x(n)) =
∑

i+j=n x
(i) ⊗ x(j), and ε(x(n)) = 0 for n > 0. An

isomorphism between K[x] and CSym is given by x(n) 7→ Fcn, where cn is the unique
comb in Cn.

The following result is important for what follows.

Proposition 1.3. The Hopf algebras SSym, YSym, and CSym are cofreely cogenerated
by their primitive elements. �

The result for CSym is easy. Proposition 1.3 is proven for SSym and YSym in [2] and
[3] by performing a change of basis—from the fundamental basis Fw to the monomial
basis Mw—by means of Möbius inversion in a poset structure placed on S· and Y·. We
revisit this in Section 4.3.
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2. Cofree Compositions of Coalgebras

2.1. Cofree composition of coalgebras. Let C and D be graded coalgebras. We
form a new coalgebra E = D ◦ C on the vector space

D ◦ C :=
⊕

n≥0

Dn ⊗ C
⊗(n+1) .(2.1)

We write E =
⊕

n≥0 E(n), where E(n) = Dn ⊗ C
⊗(n+1). This gives a coarse coalgebra

grading of E by D-degree. There is a finer grading of E by total degree, in which a
decomposable tensor c0⊗· · ·⊗cn⊗d (with d ∈ Dn) has total degree |c0|+ · · ·+ |cn|+ |d|.
Write En for the linear span of elements of total degree n.

Example 2.1. This composition is motivated by a grafting construction on trees. Let
d × (c0, . . . , cn) ∈ Yn ×

(

Y·n+1
)

. Define ◦ by attaching the forest (c0, . . . , cn) to the
leaves of d while remembering d,

×

(

, , , ,

)

◦
7−→ .

This is a new type of tree (painted trees in Section 4). Applying this construction to
the indices of basis elements of C and D and extending by multilinearity gives D ◦ C.

Motivated by this example, we represent an decomposable tensor in D ◦ C as

d ◦ (c0· · · · ·cn) or
c0· · · · ·cn

d
to compactify notation.

2.1.1. The coalgebra D ◦ C. We define the compositional coproduct ∆ for D ◦ C on
indecomposable tensors and extend multilinearly: if |d| = n, put

(2.2) ∆
(c0· · · · ·cn

d

)

=

n
∑

i=0

∑

(d)
|d′|=i

∑

(ci)

c0· · · · ·ci−1·c
′
i

d′
⊗
c′′i ·ci+1· · · · ·cn

d′′
,

where the coproducts in C and D are expressed using Sweedler notation.
The counit ε : D ◦ C → K is given by ε(d ◦ (c0· · · · ·cn)) = εD(d) ·

∏

j εC(cj). Hence, it
is zero off of D0 ⊗ C0.

Remark 2.2. The reader may check that for the painted trees of Example 2.1, if
c0, . . . , cn and d are elements of the F -basis of YSym, then d ◦ (c0· · · · ·cn) represents a

painted tree t and ∆(d ◦ (c0· · · · ·cn)) is the sum over all splittings t
g
→ (t′, t′′) of t into

a pair of painted trees.

Theorem 2.3. (D◦C,∆, ε) is a coalgebra. This composition is functorial, if ϕ : C → C′

and ψ : D → D′ are morphisms of graded coalgebras, then

c0· · · · ·cn
d

7−→
ϕ(c0)· · · · ·ϕ(cn)

ψ(d)

defines a morphism of graded coalgebras ϕ ◦ ψ : D ◦ C → D′ ◦ C′.
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Proof. Let 1 be the identity map. Fix e := d ◦ (c0· · · · ·cn) ∈ (D ◦ C)(n). From (2.2), we
have

(∆⊗ 1)∆(e) =

n
∑

i=0

i−1
∑

j=0

∑

(d),(d′)
|d′|=i,|(d′)′|=j

∑

(ci),(cj)

c0· · · · ·c
′
j

(d′)′
⊗
c′′j · · · · ·c

′
i

(d′)′′
⊗
c′′i · · · · ·cn

d′′

+

n
∑

i=0

∑

(d),(d′)
|d′|=i,|(d′)′′|=0

∑

(ci),(c′i)

c0· · · · ·(c
′
i)
′

(d′)′
⊗

(c′i)
′′

(d′)′′
⊗
c′′i · · · · ·cn

d′′
.

Using coassociativity, this becomes

n
∑

i=0

i−1
∑

j=0

∑

(d)
|d′|=i,|d′′|=j

∑

(ci),(cj)

c0· · · · ·c
′
j

d′
⊗
c′′j · · · · ·c

′
i

d′′
⊗
c′′i · · · · ·cn

d′′′

+

n
∑

i=0

∑

(d)
|d′|=i,|d′′|=0

∑

(ci)

c0· · · · ·c
′
i

d′
⊗
c′′i
d′′
⊗
c′′′i · · · · ·cn

d′′′
.

Simplification of (1⊗∆)∆(e) reaches the same expression, proving coassociativity.
For the counital condition, we have

(ε⊗ 1)∆(e) =
n
∑

i=0

∑

(d)
|d′|=i

∑

(ci)

ε

(

c0· · · · ·ci−1·c
′
i

d′

)

c′′i ·ci+1· · · · ·cn
d′′

=
∑

(d)
|d′|=0

∑

(c0)

ε

(

c′0
d′

)

c′′0·c1· · · · ·cn
d′′

,

since εD(d
′) = 0 unless |d′| = 0. Continuing, this becomes

∑

(d)
|d′|=0

∑

(c0)

ε(c′0)c
′′
0·c1· · · · ·cn
ε(d′)d′′

= e ,

by the counital conditions in C and D. The identity (1⊗ε)∆(e) = e is similarly verified,
proving the counital condition for D ◦ C. Lastly, the functoriality is clear. �

2.1.2. The cofree coalgebra D ◦ C. Suppose that C and D are graded, connected, and
cofree. Then C = C(PC), where PC ⊂ C is its space of primitive elements. Likewise,
D = C(PD). As in Section 1.1, we use “\” for internal tensor products.

Theorem 2.4. If C and D are cofree coalgebras then D ◦ C is also a cofree coalgebra.
Its space of primitive elements is spanned by indecomposible tensors of the form

(2.3)
1·c1· · · · ·cn−1·1

δ
and

γ

1
where γ, ci ∈ C and δ ∈ Dn with γ, δ primitive.
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Proof. Let E = D◦C and let PE denote the vector space spanned by the vectors in (2.3).
We compare the compositional coproduct ∆ to the deconcatenation coproduct ∆C on
the space C(PE). We define a vector space isomorphism ϕ : E → C(PE) and check that
∆C ϕ(e) = (ϕ⊗ ϕ)∆(e) for all e ∈ E .

Let e = d ◦ (c0· · · · ·cn). Define ϕ recursively as follows:

• If d = 1 and c0 = c′0\c
′′
0, put ϕ

(c0
1

)

= ϕ

(

c′0
1

)

∖

ϕ

(

c′′0
1

)

.

• If |c0| > 0, put ϕ(e) = ϕ
(c0
1

)∖

ϕ

(

1·c1· · · · ·cn
d

)

.

• If |cn| > 0, put ϕ(e) = ϕ

(

c0· · · · ·cn−1·1

d

)

∖

ϕ
(cn
1

)

.

• If d = d′\d′′ with |d′| = i, then put ϕ(e) = ϕ
(c0· · · · ·ci

d′

)∖

ϕ

(

1·ci+1· · · · ·cn
d′′

)

.

We illustrate ϕ with an example from E(5):

a′\a′′ · b · c · u′\u′′ · v · w

d′\d′′
ϕ
7−→

a′

1

∖ a′′

1

∖ 1 · b · c · 1

d′

∖ u′

1

∖ u′′

1

∖ 1 · v · 1

d′′

∖ w

1
.

Here |d′| = 3 and all variables belong to PC ∪ PD.
To see that ϕ is a coalgebra map, notice that locations to deconcatenate ϕ(e),

t1\ · · · \tN 7−→ t1\ · · · \ti ⊗ ti1\ · · · \tN ,

are in bijection with pairs of locations: a place to deconcatenate d and a place to
deconcatenate an accompanying ci. These are exactly the choices governing (2.2), given
that d and each ci belong to tensor powers of PD and PC, respectively. �

2.2. Examples of cofree compositions of coalgebras. The graded Hopf algebras
of ordered trees SSym, planar trees YSym, and divided powers CSym are all cofree,
and so their compositions are cofree. We have the surjective Hopf algebra maps

SSym −→ YSym −→ CSym

giving a commutative diagram of nine cofree coalgebras (Figure 2), as the composition
◦ is functorial. In Section 3, we use operads to further analyze eight of these nine (all
except SSym ◦ SSym). We show that these eight are one-sided Hopf algebras. The
algebra PSym of painted trees appears in the center of this 3 × 3 grid. We discuss
PSym further in Section 4, the algebra YSym ◦ CSym in Section 5, and the algebra
CSym ◦ CSym in Section 6.

2.3. Enumeration. We enumerate the graded dimension of many examples from Sec-
tion 2.2. Set E := D◦C and let Cn and En be the dimensions of Cn and En, respectively.

Theorem 2.5. When Dn has a basis indexed by combs with n internal nodes we have
the recursion

E0 = 1 , and for n > 0, En = Cn +

n−1
∑

i=0

CiEn−i−1 .
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SSym ◦SSym

�
�

�	

@
@
@R

SSym ◦ YSym YSym ◦SSym

@
@
@R

�
�

�	

�
�

�	

@
@
@R

SSym ◦ CSym CSym ◦SSymYSym ◦ YSym

@
@
@R

�
�

�	

@
@
@R

�
�

�	

YSym ◦ CSym CSym ◦ YSym

@
@
@R

�
�

�	

CSym ◦ CSym

Figure 2. A commutative diagram of cofree compositions of coalgebras.

Proof. The first term in the expression for En counts elements in En of the form ◦ c.
Removing the root node of d from d ◦ (c0· · · · ·ck) gives a pair ◦ (c0) and d′ ◦ (c1· · · · ·ck)
with c0 ∈ Ci, whose dimensions are enumerated by the terms CiEn−i−1 of the sum. �

For combs over a comb, En = 2n. For trees over a comb, En are the Catalan numbers.
For permutations over a comb, we have the recursion

E0 = 1 , and for n > 0, En = n! +

n−1
∑

i=0

i!En−i−1 ,

which begins 1, 2, 5, 15, 54, 235, . . . , and is sequence A051295 in the On-line Encyclope-
dia of Integer Sequences (OEIS) [14]. (This is the invert transform [4] of the factorial
numbers.)

Theorem 2.6. When Dn has a basis indexed by Yn, then we have the recursion

E0 = 1 , and for n > 0, En = Cn +

n−1
∑

i=0

EiEn−i−1 .

Proof. Again, the first term in the expression for En is the number of basis elements of
Cn, since each of these trees is grafted on to the unit element of D. The sum accounts
for the possible pairs of trees obtained from removing root nodes in D. In this case,
each subtree from the root is another tree in E . �

For example, combs over a tree are enumerated by the binary transform of the Catalan
numbers [7]. Trees over a tree are enumerated by the Catalan transform of the Catalan
numbers [6]. Permutations over a tree are enumerated by the recursion

E0 = 1 , and for n > 0, En = n! +

n−1
∑

i=0

EiEn−i−1 ,



COFREE COMPOSITIONS OF COALGEBRAS 9

which begins 1, 2, 6, 22, 92, 428, . . . and is not a recognized sequence in the OEIS [14].
For E = SSym ◦ C, we do not have a recursion, but do have a formula from direct

inspection of the possible trees d ◦ (c0· · · · ·ck) with |d| = k (since |Sk| = k!)

En =

n
∑

k=0

k!
∑

(γ0,...,γk)

Cγ0 · · ·Cγk ,

the sum over all weak compositions γ = (γ0, . . . , γk) of n−k into k+1 parts (γi ≥ 0).

Since the number of such weak compositions is
(

(n−k)+(k+1)−1
(k+1)−1

)

=
(

n
k

)

, when C = CSym

so that Cn = 1, this formula becomes

En =
n
∑

k=0

k!
(

n
k

)

=
n
∑

k=0

n!/k! ,

which is sequence A000522 in the OEIS [14].

3. Composition of Coalgebras and Hopf Modules

We give conditions ensuring that a composition of coalgebras is a one-sided Hopf alge-
bra, interpret these in the language of operads, and then investigate which compositions
of Section 2.2 are one-sided Hopf algebras.

3.1. Module coalgebras. Let D be a connected graded Hopf algebra with product
mD, coproduct ∆D, and unit element 1D.

A map f : E → D of graded coalgebras is a connection on D if E is a D–module
coalgebra, f is a map of D-module coalgebras, and E is connected. That is, E is
an associative (left or right) D-module whose action (denoted ⋆) commutes with the
coproducts, so that ∆E(e ⋆ d) = ∆E(e) ⋆∆D(d), for e ∈ E and d ∈ D, and the coalgebra
map f is also a module map, so that for e ∈ E and d ∈ D we have

(f ⊗ f)∆E(e) = ∆D f(e) and f(e ⋆ d) = mD (f(e)⊗ d) .

We may sometimes use subscripts (fl or fr) on a connection f to indicate that the
action is a left- or right-module action.

Theorem 3.1. If E is a connection on D, then E is also a Hopf module and a comodule
algebra over D. It is also a one-sided Hopf algebra with one-sided unit 1E := f−1(1D)
and antipode.

Proof. Suppose E is a right D-module. Define the product mE : E ⊗ E → E via the
D-action: mE := ⋆ ◦ (1 ⊗ f). The one-sided unit is 1E . Then ∆E is an algebra map.
Indeed, for e, e′ ∈ E , we have

∆E(e · e
′) = ∆E(e ⋆ f(e

′)) = ∆Ee ⋆∆Df(e
′) = ∆Ee ⋆ (f ⊗ f)(∆Ee

′) = ∆Ee ·∆Ee
′ .

As usual, εE is just projection onto E0. The unit 1E is one-sided, since

e · 1E = e ⋆ f(1E) = e ⋆ f(f−1(1D)) = e ⋆ 1D = e ,

but 1E · e = 1E ⋆ f(e) is not necessarily equal to e. As E is a graded bialgebra, the
antipode S may be defined recursively to satisfy mE(S⊗1)∆E = εE , see 4.2. (If instead
E is a left D-module, then it has a left-sided unit and right-sided antipode.)
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Define ρ : E → E ⊗ D by ρ := (1 ⊗ f)∆E . This gives a coaction so that E is a Hopf
module and a comodule algebra over D. �

3.2. Operads and operad modules. Composition of coalgebras is the same product
used to define operads internal to a symmetric monoidal category [1, Appendix B]. A
monoid in a category with a product • is an object D with a morphism γ : D •D → D
that is associative. An operad is a monoid in the category of graded sets with an analog
of the composition product ◦ defined in Section 2.1.

The category of connected graded coalgebras and coalgebra maps is a symmetric
monoidal category with the composition ◦ of coalgebras. A graded Hopf operad D is a
monoid in this category. That is, D has associative composition maps γ : D ◦ D → D
obeying

∆Dγ(a) = (γ ⊗ γ) (∆D◦D(a)) for all a ∈ D ◦ D .

By Theorem 3.4, D is a Hopf algebra; this explains our nomenclature.
A graded Hopf operad module E is an operad module (left or right) over D and a

graded coassociative coalgebra whose module action is compatible with its coproduct.
Write µl : D◦E → E and µr : E ◦D → E for the left and right actions, which obey, e.g.,

∆Eµr(b) = (µr ⊗ µr)∆E◦Db for all b ∈ E ◦ D .

Example 3.2. YSym is an operad in the category of vector spaces. The action of γ
on Ft ◦ (Ft0· · · · ·Ftn) grafts the indexing trees t0, . . . , tn onto the tree t and, unlike in
Example 2.1, forgets which nodes of the resulting tree came from t. This is associative
in the appropriate sense. The same action γ makes YSym an operad in the category
of connected graded coalgebras, and thus a graded Hopf operad. Finally, operads are
operad modules over themselves, so YSym is also graded Hopf operad module.

Remark 3.3. This notion differs from that of Getzler and Jones [10], who defined a
Hopf operad D to be an operad where each component Dn is a coalgebra.

Theorem 3.4. A graded Hopf operad D is also a Hopf algebra with product

a · b := γ(b⊗∆(n)a)(3.1)

where b ∈ Dn and ∆(n) is the iterated coproduct from D to D⊗(n+1).

Remark 3.5. If we swap the roles of a and b on the right-hand side of (3.1), we also
obtain a Hopf algera, for Hop is a Hopf algebra whenever H is one. Our choice agrees
with the description (Section 1.2) of products in YSym and CSym.

Before we prove Theorem 3.4, we restate an old result in the language of operads.

Proposition 3.6. The well-known Hopf algebra structures of YSym and CSym are
induced by their structure as graded Hopf operads.

Proof. The operad structure on YSym is the operad of planar, rooted, binary trees,
where composition γ is grafting. The operad structure on CSym is the terminal operad,
which has a single element in each component. Representing the single element of
degree n as a comb of n leaves, the composition γ becomes grafting and combing all
branches of the result.
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We check that these compositions γ are coalgebra maps. For D = YSym, the co-
product ∆D◦D in the F -basis is the sum over possible splittings of the composite trees.
Then splitting an element of e ∈ D ◦ D and grafting both resulting trees (via γ ⊗ γ)
yields the same result as first grafting (e → γ(e)), then splitting the resulting tree.
When D = CSym, virtually the same analysis holds, with the proviso that graftings are
always followed by combing all branches to the right.

Finally, we note that the product in YSym in terms of the F -basis is simply a · b =
γ(b ⊗ ∆(|b|)a). The same holds for CSym, again with the proviso that γ is grafting,
followed by combing. �

Proof of Theorem 3.4. We have γ(1 ⊗ 1) = 1 and γ(b ⊗ 1⊗|b|+1) = b by construction,
since D is connected. Thus 1 = 1D is the unit in D.

The image of 1⊗∆(n) lies in D ◦ D. As γ is a map of graded coalgebras, ∆(a · b) =
∆a ·∆b. Indeed, for b ∈ D homogeneous,

∆(a · b) = ∆(γ(b⊗∆(|b|)a)) = (γ ⊗ γ)(∆D◦D(b⊗∆(|b|)a))

= (γ ⊗ γ)((∆b⊗∆(|b|)∆a)) = ∆a ·∆b .

Associativity of the product follows, since for b, c homogeneous elements of D, we have

a · (b · c) = a · γ(c⊗∆(|c|)b) = γ
(

γ(c⊗∆(|c|)b)⊗∆(|b|+|c|)a
)

= γ
(

c⊗ γ⊗(|c|+1)(∆(|c|)b⊗∆(|b|+|c|)a)
)

(3.2)

= γ
(

c⊗ (∆(|c|)a ·∆(|c|)b)
)

= γ(c⊗∆(|c|)(a · b)) = (a · b) · c .(3.3)

Here, (3.2) is by the associativity of composition γ in an operad, where we assume the
isomorphism D◦ (D◦D) ∼= (D◦D)◦D. The step (3.3) follows as D is a bialgebra (∆(n)

is an algebra map since ∆ = ∆(1) is one). �

Lemma 3.7. If C is a graded coalgebra and D is a graded Hopf operad, then D ◦ C is
a (left) graded Hopf operad module and C ◦ D is a (right) graded Hopf operad module.

Proof. We grade D◦C and C◦D by total degree. An operad module of vector spaces is a
sequence of vector spaces acted upon by the operad. The action µl : D◦(D◦C)→ (D◦C)
is given by

µl

(

d⊗
c00· · · · ·ci0

d0
⊗ · · · ⊗

c0n· · · · ·cin
dn

)

=
c00· · · · ·cin

γ(d⊗ d0 ⊗ · · · ⊗ dn)
.

Associativity of γ implies that this action is associative. The action µr : (C ◦D) ◦ D →
(C ◦ D) is given by

µr

(

d0· · · · ·dm
c

⊗ d00 ⊗ · · · ⊗ djm

)

=
γ(d0 ⊗ d00 ⊗ · · · ⊗ dj0)· · · · ·γ(dm ⊗ d0m ⊗ · · · ⊗ djm)

c
.

Associativity of γ implies that this action is associative as well. We leave the reader to
check that ∆µl = (µl ⊗ µl)∆ and ∆µr = (µr ⊗ µr)∆. �
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Lemma 3.8. A graded Hopf operad module E over a graded Hopf operad D is also a
module coalgebra for the Hopf algebra D.

Proof. Fix e ∈ E and d ∈ D to be homogeneous elements. If E is a right operad module
over D then define a left action by d ⋆ e := µr(e⊗∆(|e|)d). If E is a left operad module
over D then e ⋆ d := µl(d⊗∆(|d|)e) defines a right action.

Checking that either case defines an associative action and a module coalgebra uses
the same reasoning as for the proof of Theorem 3.4, with µ replacing γ. �

Theorem 3.9. Given a coalgebra map λ : C → D from a connected graded coalgebra C to
a graded Hopf operad D, the maps fr = γ◦(1◦λ) : D◦C → D and fl = γ◦(λ◦1) : C◦D →
D give connections on D.

Proof. By Theorem 3.4 and Lemmas 3.7 and 3.8, D ◦C and C ◦D are connected graded
module coalgebras over D. We need only show that the maps fr and fl are coalgebra
maps and module maps. In terms of decomposable tensors, the maps take the form,

fr

(c0· · · · ·cn
d

)

:= γ

(

λ(c0)· · · · ·λ(cn)

d

)

and fl

(

d0· · · · ·dn
c

)

:= γ

(

d0· · · · ·dn
λ(c)

)

.

These are coalgebra maps since both λ and γ are coalgebra maps. The associativity
of γ implies that fr and fl are maps of right and left D-modules, respectively. �

3.3. Examples of module coalgebra connections. Eight of the nine compositions
of coalgebras from Section 2.2 are connections on one or both of the factors C and D.

Theorem 3.10. For C ∈ {SSym,YSym,CSym}, the coalgebra compositions C ◦ CSym
and CSym ◦ C are connections on CSym. For C ∈ {SSym,YSym,CSym}, the coalgebra
compositions C ◦ YSym and YSym ◦ C are connections on YSym.

Proof. By Theorem 3.9 and Proposition 3.6, we need only show the existence of coal-
gebra maps from C to D, for C ∈ {SSym,YSym,CSym} and D ∈ {YSym,CSym}.

For D = CSym , the maps κτ , κ, and 1 are all coalgebra maps to CSym (Proposition
1.1). For D = YSym, the maps τ and 1 are coalgebra maps to YSym. Lastly, combs are
binary trees, and the induced inclusion map CSym →֒ YSym is a coalgebra map. �

Note that in particular, YSym ◦ CSym is a connection on both CSym and YSym.
This yields two distinct one-sided Hopf algebra structures on YSym ◦ CSym. Likewise,
YSym ◦ YSym is a connection on YSym in two distinct ways (again leading to two
distinct one-sided Hopf structures). In the remaining sections, we discuss three of the
compositions of Section 2.2 which have appeared previously.

4. A Hopf Algebra of Painted Trees

Our motivating example is the self-composition PSym := YSym ◦ YSym. Elements
of the fundamental basis of PSym are Fp = d ◦ (c0· · · · ·c|d|), where c0, . . . , c|d| and d are
elements of the fundamental basis of YSym. The indexing trees of c1, . . . , c|d| and d
may be combined to form painted trees as in Example 2.1. We describe the topological
origin of painted trees and their relation to the multiplihedron, and we relate the Hopf
structures of PSym to the Hopf structures ofMSym developed in [8].
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4.1. Painted binary trees in topology. A painted binary tree is a planar binary tree
t, together with a (possibly empty) upper order ideal of its node poset. We indicate
this ideal by painting on top of a representation of t. For clarity, we stop our painting
in the middle of edges. Here are a few simple examples,

(4.1)
, , , , , .

An An-space is a topological H-space with a weakly associative multiplication of
points [15]. (Products are represented by planar binary trees as these distinguish be-
tween possible choices of associations.) Maps between An-spaces preserve the multi-
plicative structure only up to homotopy. Stasheff [15] described these maps combina-
torially using cell complexes called multiplihedra, while Boardman and Vogt [5], used
spaces of painted trees. Both the spaces of trees and the cell complexes are homeomor-
phic to convex polytope realizations of the multiplihedra as shown in [6].

If f : (X, •) → (Y, ∗) is a map of An-spaces, then the different ways to multiply and
map n points ofX are represented by painted trees. Unpainted nodes are multiplications
inX, painted nodes are multiplications in Y , and the beginning of the painting indicates
that f is applied to a given point in X. See Figure 3.

f(a)∗
(

f(b • c)∗ f(d)
)

←→

Figure 3. An-maps between H-spaces correspond to painted binary trees.

Figure 5 shows the three-dimensional multiplihedron with its vertices labeled by
painted trees having three internal nodes. This picture of the multiplihedron also shows
that the vertices are the elements of a lattice whose Hasse diagram is the one-skeleton
of the polytope in the view shown. See [8] for an explicit description of the covering
relations in terms of bi-leveled trees.

4.2. Painted trees as bi-leveled trees. A bi-leveled tree is a planar binary tree t
together with an order ideal T of its node poset which contains the leftmost node, but
none of its children. We display bi-leveled trees corresponding to the painted trees
of (4.1), circling the nodes in T.

, , , , , .

Bi-leveled trees having n+1 internal nodes are in bijection with painted trees having
n internal nodes, the bijection being given by pruning: Remove the leftmost branch
and node from a bi-leveled tree to get a tree whose order ideal is the order ideal of
the bi-leveled tree, minus the leftmost node. For an illustration of this and the inverse
mapping, see Figure 4.

Let Mn be the set of bi-leveled trees with n internal nodes. In [8] we developed
several algebraic structures on the graded vector space MSym with basis Fb indexed
by bi-leveled trees b, graded by the number of internal nodes of b. We also placed a
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←−−−−−−−→

Figure 4. Painted trees correspond to bi-leveled trees.

YSym–Hopf module structure on MSym+, the positively graded part of MSym. We
revisit this structure in Section 4.4.

4.3. The coalgebra of painted trees. Let Pn be the poset of painted trees on n
internal nodes, with partial order inherited from the identification with bi-leveled trees
Mn+1. We show P3 in Figure 5. We refer to [8] for a description of the order onMn+1.

Figure 5. The one-skeleton of the three-dimemsional multiplihedron, M4.

(Note that the map from P· to M· actually lands in M+, which consists of the trees

inM· with one or more nodes.)
We reproduce the compositional coproduct defined in Section 2.1.

Definition 4.1 (Coproduct on PSym). Given a painted tree p, define the coproduct
in the fundamental basis

{

Fp | p ∈ P·
}

by

∆(Fp) =
∑

p
g

→(p0,p1)

Fp0 ⊗ Fp1 ,

where the painting in p is preserved in the splitting p
g
→ (p0, p1).

The counit ε is projection onto PSym0, which is spanned by F .
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Theorem 2.4 describes the primitive elements of PSym = YSym ◦ YSym in terms
of the primitive elements of YSym. We recall the description of primitive elements of
YSym as given in [3]. The set of trees Yn forms a poset whose covering relation is
obtained by moving a child node of a given node from the left to the right branch above
the given node. Thus

−→ −→ −→

is an increasing chain in Y3 (the moving vertices are marked with dots).
Let µ be the Möbius function of Yn which is defined by µ(t, s) = 0 unless t ≤ s,

µ(t, t) = 1 , and µ(t, r) = −
∑

t≤s<r

µ(t, s) .

We define a new basis for YSym using the Möbius function. For t ∈ Yn, set

Mt :=
∑

t≤s

µ(t, s)Fs .

Then the coproduct for YSym with respect to this M-basis is still given by splitting of
trees, but only at leaves emanating directly from the right branch above the root:

∆(M ) = 1⊗M + M ⊗M + M ⊗ 1 .

A tree t ∈ Yn is progressive if it has no branching along the right branch above the root
node. A consequence of the description of the coproduct in this M-basis is Corollary
5.3 of [3] that the set {Mt | t is progressive} is a linear basis for the space of primitive
elements in YSym .

Thus according to Theorem 2.4 the cogenerating primitives in PSym are of two types:

1·c1· · · · ·cn−1·1

Mt

and
Mt

1
,

where t is a progressive tree.
Here are some examples of the first type,

M :=
1 · F · 1 · 1

M
= F − F ,

M :=
1 · 1 · 1 · 1

M
= F − F ,

M :=
1 · F · 1

M
= F − F ,

and one of the second type,

M :=
M

1
= F − F .

The primitives can be described in terms of Möbius inversion on certain subintervals
of the multiplihedra lattice. For the first type, the subintervals are those with a fixed
unpainted forest of the form ( , t, . . . , s, ). For the second type, the subinterval consists
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of those trees whose painted part is trivial, . Each subinterval of the first type is
isomorphic to Ym for some m ≤ n, and the second subinterval is isomorphic to Yn.
Figure 6 shows the multiplihedron lattice P3, with these subintervals highlighted.

Figure 6. The multiplihedron latticeM4 showing the three subintervals
that yield primitives via Möbius inversion.

4.4. Hopf structures on painted trees. As determined in the proof of Theorem
3.10, the identity map 1 : YSym → YSym yields a connection fr : PSym → YSym. In
particular (Theorem 3.1), PSym is a one-sided Hopf algebra, a YSym–Hopf module, and
a YSym–comodule algebra. We discuss these structures, and relate them to structures
placed onMSym in [8].

Let p, q be painted trees with |q| = n. In terms of the F -basis, fr simply forgets the
painting level, e.g., fr(F ) = F . Thus Theorem 3.1 describes the product Fp · Fq

in PSym as

Fp · Fq =
∑

p
g

→(p0,p1,...,pn)

F(p0,p1,...,pn)/q+ ,

where the painting in p is preserved in the splitting (p0, p1, . . . , pn), and q+ signifies that
q is painted completely before grafting. Here is an example of the product,

F · F = F + F + F + F .

The painted tree with 0 nodes is only a right unit: for all q ∈ P·,
F · Fq = Fq+ and Fq · F = Fq .

Although the antipode is guaranteed to exist, we include a proof for purpose of
exposition.
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Theorem 4.2. There are unit and antipode maps η : K → PSym and S : PSym →
PSym making PSym a one-sided Hopf algebra.

Proof. We just observed that η : 1 7→ F is a right unit for PSym . We verify that a left
antipode exists. That is, there exists a map S : PSym → PSym such that S(F ) = F ,
and for p ∈ P+, we have

(4.2)
∑

p
g

→(p0,p1)

S(Fp0) · Fp1 = 0 .

Since PSym is graded, and |p| = |p0| + |p1| whenever p
g
→ (p0, p1), we may recursively

construct S using induction on |p|. First, set S(F ) = F . Then, given any painted tree
p, the only term involving S(Fq) in (4.2) with |q| = |p| is S(Fp) · F = S(Fp), and so we
may solve (4.2) for S(Fp) to obtain

S(Fp) := −
∑

p
g

→(p0,p1)

|p0|,|p1|>0

S(Fp0) · Fp1 − S(F ) · Fp ,

expressing S(Fp) in terms of previously defined values S(Fq). �

For example,

S(F ) = −S(F ) · F = −F , and

S(F ) = −S(F ) · F − S(F ) · F = F · F − F

= F + F − F = F .

Remark 4.3. One may be tempted to artificially adjoin a true unit e to PSym, but
this only pushes the problem to the antipode map: S(F ) cannot be defined if η(1) = e.

The YSym-Hopf module structure on PSym of Theorem 3.1 has coaction,

ρ(Fp) =
∑

p
g

→(p0,p1)

Fp0 ⊗ Ff(p1) ,

where the painting in p is preserved in the first half of the splitting (p0, p1), and forgotten
in the second half.

Under the bijection between P· and M+ that grows an extra node as in Figure 4,

the splittings and graftings on PSym map to the restricted splittings
g+
−→ and graftings

defined in [8, Section 4.1]. Moreover, we can split and graft before or after the bijection
to achieve the same results. These facts allow the following corollary.

Corollary 4.4. The YSym action and coaction defined in [8, Section 4.1] makeMSym+

into a Hopf module isomorphic to the Hopf module PSym. �

The coinvariants of a Hopf module ρ : E → E ⊗ D are elements e ∈ E such that
ρ(e) = e⊗ 1. The coinvariants for the action of Corollary 4.4 were described explicitly
in [8, Corollary 4.5]. In contrast to the discussion in Section 4.3, Möbius inversion in
the entire latticeM· helps to find the coinvariants.
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5. A Hopf Algebra of Weighted Trees

The composition of coalgebras YSym◦CSym has fundamental basis indexed by forests
of combs attached to binary trees, which we will call weighted trees. By the first
statement of Theorem 3.10, it has a connection on CSym that gives it the structure of
a one-sided Hopf algebra. We examine this Hopf algebra in more detail.

5.1. Weighted trees in topology. In a forest of combs attached to a binary tree,
the combs may be replaced by corollae or by a positive weight counting the number of
leaves in the comb. These all give weighted trees.

(5.1) = =
2 3 1 2

Let CKn denote the weighted trees with weights summing to n+1. These index the
vertices of the n-dimensional composihedron, CK(n+1) [7]. This sequence of polytopes
parameterizes homotopy maps between strictly associative and homotopy associative
H-spaces. Figure 7 gives a picture of the composihedron CK3. For small values of n,

Figure 7. The one-skeleton of the three-dimensional composihedron.

the composihedra CK(n) also appear as the commuting diagrams in enriched bicate-
gories [7]. These diagrams appear in the definition of pseudomonoids [1, Appendix C].

5.2. A Hopf algebra of weighted trees. We describe the key definitions of Sec-
tion 2.1 and Section 3 for CKSym := YSym ◦ CSym . In the fundamental basis

{

Fp |

p ∈ CK·
}

of CKSym , the coproduct is

∆(Fp) =
∑

p
g

→(p0,p1)

Fp0 ⊗ Fp1 ,



COFREE COMPOSITIONS OF COALGEBRAS 19

where the painting in p ∈ CK· is preserved in the splitting p
g
→ (p0, p1). The counit

ε is projection onto CKSym0, which is spanned by F . Here is an example in terms of
weighted trees,

∆(F2 1 2) = F1 ⊗ F2 1 2 + F2 ⊗ F1 1 2 + F2 1⊗ F1 2 + F2 1 1⊗ F2 + F2 1 2⊗ F1 .

The primitive elements of CKSym = YSym ◦ CSym have the form

F 2 =
F

1
and

1·c1· · · · ·cn−1·1

Mt
,

where t is a progressive tree with n nodes and c1, . . . , cn−1 are any elements of CSym.
In terms of weighted trees, the indices of the second type are weighted progressive trees
with weights of 1 on their leftmost and rightmost leaves.

Let fl : CKSym → CSym be the connection given by Theorem 3.9 (built from the
coalgebra map κ). Then Theorem 3.1 gives the product

Fp · Fq := fl(Fp) ⋆ Fq , where p, q ∈ CK· .
In terms of the F -basis, fl acts on indices, sending a weighted tree p to the unique
comb fl(p) with the same number of nodes as p. The action ⋆ in the F -basis is given
as follows: split fl(p) in all ways to make a forest of |q|+1 combs; graft each splitting
onto the leaves of the forest of combs in q; comb the resulting forest of trees to get a

new forest of combs. We illustrate one term in the product. Suppose that p =
2 1

=

and q =
1 2 1

= . Then fl(p) = and one way to split fl(p) gives the forest

( , , , ). Grafting this onto q gives , which after combing the forest yields

the term =
1 3 2

in the product p · q. Doing this for the other nine splittings of
fl(p) gives

F2 1 · F1 2 1 = F3 2 1 + 3F1 4 1 + F1 2 3 + 2F2 3 1 + F2 2 2 + 2F1 3 2.

6. Composition trees and the Hopf algebra of simplices

The simplest composition of Section 2.2 is CSym ◦ CSym. As shown in Section 2.3,
the graded component of total degree n has dimension 2n, indexed by trees with n
interior nodes obtained by grafting a forest of combs to the leaves of a comb (which is
painted). Analogous to (5.1), these are weighted combs. As these are in bijection with
compositions of n+1, we refer to them as composition trees.

=
3 2 1 4

= (3, 2, 1, 4) .

6.1. Hopf algebra structures on composition trees. The coproduct may again be
described via splitting. Since the composition tree (1, 3) has the four splittings

(6.1)
g
−−→

(

,
)

,
(

,
)

,
(

,
)

,
(

,
)

,

we have ∆(F1,3) = F1 ⊗ F1,3 + F1,1 ⊗ F3 + F1,2 ⊗ F2 + F1,3 ⊗ F1.
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The identity map on CSym gives two connections CSym◦CSym → CSym (using either
fl or fr from Theorem 3.9). This gives two new one-sided Hopf algebra structures on
compositions.

6.1.1. Hopf structure induced by fl. Let p, q be composition trees and consider the
product Fp ·Fq := fl(Fp) ⋆ Fq . At the level of indices in the F -basis, the connection fl
sends the composition tree p to the unique comb fl(p) with the same number of vertices
as p. The action fl(Fp) ⋆ Fq may be described as follows: split the comb fl(p) into a
forest of |q|+1 combs in all possible ways; graft each splitting onto the leaves of the
forest in q; comb the resulting forest of trees to get a new forest of combs. For example,
F1,3 · F1,1 = F1,4 + F2,3 + F3,2 + F4,1, or alternatively,

(6.2) F · F = F + F + F + F .

This may be seen by unpainting and grafting the splittings (6.1) onto the tree .
Likewise, F1,3 ·F2 = 4F4, for no matter which of the four splittings of fl(1, 3) is chosen,

the grafting onto and subsequent combing will yield the same tree .

6.1.2. Hopf structure induced by fr. Let p, q be composition trees and consider the
product Fp · Fq := Fp ⋆ fr(Fq) . At the level of indices in the F -basis, the connection
fr sends a composition tree q to the unique comb fr(q) with |q| vertices. The action
Fp ⋆ fr(Fq) may be described as follows: first paint the comb fr(q); next split the
composition tree p into a forest of |q|+1 composition trees in all possible ways; finally,
graft each forest onto the leaves of the painted tree fr(q) and comb the resulting painted
subtree (which comes from the nodes of q and the painted nodes of p). For example,
F1,3 · F2 = 2F1,1,3 + F1,2,2 + F1,3,1, or alternatively,

(6.3) F · F = F + F + F + F .

This may be seen by grafting the splittings (6.1) onto the tree fr( ) = .

6.2. Composition trees in topology. A one-sided Hopf algebra ∆Sym was defined
in [9, Section 7.3] whose nth graded piece had a basis indexed by the faces of the (n−1)-
dimensional simplex. We recount the product and coproduct introduced there. (The

notation ˜∆Sym was used for this algebra in [9] to distinguish it from an algebra based
only on the vertices of the simplex.) Faces of the (n−1)-dimensional simplex correspond
to subsets S of [n] := {1, . . . , n}, so this is a Hopf algebra whose nth graded piece also

has dimension 2n, with fundamental basis F
[n]
S

.
An ordered decomposition n = p + q gives a splitting of [n] into two pieces [p] and

ιp([q]) := {p+1, . . . , n}. Any subset S ⊆ [n] gives a pair of subsets S′ ⊆ [p] and S
′′ ⊆ [q],

S
′ := S ∩ [p] and S

′′ := ι−1
p (S ∩ {p+1, . . . , n}) .

Then the coproduct is

∆(F
[n]
S

) =
∑

p+q=n

F
[p]
S′
⊗ F

[q]
S′′
.

For example, the coproduct on the basis element corresponding to {1} ⊆ [3] is

∆
(

F
[3]
{1}

)

= F ∅
∅ ⊗ F

[3]
{1} + F

[1]
{1} ⊗ F

[2]
∅ + F

[2]
{1} ⊗ F

[1]
∅ + F

[3]
{1} ⊗ F

∅
∅ .
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This was motivated by constructions based on certain tubings of graphs. In terms of
tubings on an edgeless graph with three nodes, the coproduct takes the form

(6.4) ∆ = ⊗ + ⊗ + ⊗ + ⊗ .

We leave it to the reader to make the identification (or see [9]).

The product F
[p]
S
· F

[q]
T

has one term for each shuffle of [p] with ιp([q]). The corre-
sponding subset R ⊆ [p+q] is the image of [p] in the shuffle (not just S), together with
the image of T. For example,

· = + + + ,(6.5)

and

· = + + + .

Let α be the bijection between subsets S = {a, b, . . . , c, d} ⊆ [n] and compositions
α(S) = (a, b−a, . . . , d− c, n+1−d) of n+1. Numbering the nodes of a composition tree
1, . . . , n from left to right, the subset of [n] corresponding to the tree is comprised of
the colored nodes.

1 2 3 4 5 6 7 8 9 10

←→ {3, 5, 6} ←→ (3, 2, 1, 4) .

Applying this bijection to the indices of their fundamental bases gives a linear iso-

morphism α : ∆Sym
≃
−→ CSym◦CSym. Comparing the definitions above, this is clearly

and isomorphism of coalgebras. Compare (6.1) and (6.4). If we use the second product
on CSym ◦ CSym (induced by the connection fr), then α is nearly an isomorphism of
the algebra, which can be seen by comparing the examples (6.3) and (6.5). In fact,
from the definitions given above, it is an anti-isomorphism (α(p · q) = α(q) · α(p)) of
one-sided algebras. We may summarize this discussion as follows.

Theorem 6.1. The map α : ∆Sym → (CSym ◦ CSym, fr)
op is an isomorphism of one-

sided Hopf algebras (with left-sided unit and right-sided antipode).

Corollary 6.2. The one-sided Hopf algebra of simplices introduced in [9] is cofree as a
coalgebra.
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