Spring 2020 Intro to Topology 3450:445-545

INSTRUCTOR: Dr. Stefan Forcey
OFFICE: CAS 275
EMAIL: sforcey@uakron.edu
PHONE: 972-6779
OFFICE HOURS: MWF 2:45-3:45pm, and lots more by appointment!
TEXTs:
[PS] Hatcher, Point-Set Topology:
http://www.math.cornell.edu/~hatcher/Top/Topdownloads.html
[AT] Hatcher, Algebraic Topology:
http://www.math.cornell.edu/~hatcher/AT/ATpage.html

BIBLIOGRAPHY:

Prasolov, V.V., Intuitive Topology A.M.S.
Weeks, Jeffrey. The Shape of Space.
Website for schedule, homework problems and announcements:
http://www.math.uakron.edu/~sf34/class_home/topo/topos20.htm

GRADING POLICY:

400 pts: Homework
200 pts: Present Homework Solutions
400 pts: Project.
900 pts. guarantees an A
800 pts. guarantees a B
700 pts. guarantees a C
600 pts. guarantees a D
(+,- at my discretion)

Course Outline:

Jan. 13 Category of topological spaces and continuous maps.
Reading [PS] Chapter 1,2 pgs 1-20.

1) \qquad Given the spaces
$X=\{1,2,3,4,5,6,7\} ; \mathcal{O}_{x}=\{\{ \}, X,\{1\},\{2\},\{1,2\},\{2,3\},\{1,2,3\},\{1,2,3,7\}\}$ and
$\mathrm{Y}=\{\mathrm{y}$ in $\mathbf{N} \mid 0<\mathrm{y}<15\} ;$
$\mathcal{O}_{\mathrm{Y}}=\{\{ \}, Y,\{2\},\{5\},\{2,5\},\{2,4,5\},\{1,2,5,7\},\{1,2,4,5,7\},\{1,2,4,5,6,7\},\{1,2,4,5,6,7,10\}\} ;$
and $\mathrm{Z}=\{2,4,6,8\} ; \mathcal{O}_{\mathrm{Z}}=\{\{ \}, \mathrm{Z},\{2\}\{4,6\}\{6,8\}\}$.
Which pair $\mathrm{A}, \boldsymbol{\mathcal { O }}_{\mathrm{A}}$ is not a topology? Find bases for the two topological spaces. Is the function $f=2 x$ continuous from X to Y ? Is the function g from the unit interval given by $g(t)=2$ for $t<1 / 2$, and $g(t)=4$ otherwise, a path in X? Is that same function a path in Y? Pick 2 from weeks 2-7, and another 2 topics from weeks 8-12. Email me!

Jan. 21 Reading [PS] Chapter 2 pgs 20-28.
2) \qquad Connectivity, path connectivity.

Is the space $\mathrm{X}, \boldsymbol{\mathcal { O }}_{\mathrm{X}}$ from the previous week path connected? Is it connected? Describe a specific space that is connected but not path connected. Describe a specific space that is connected but for which it is unknown whether it is path connected. For what topologies on the set of vertices of a graph are the edges of the graph connected as subspaces?

Feb 3 Metric spaces. Reading [PS] pgs 9-10. Also see the links below.
3) \qquad Draw the unit balls in the taxicab metric (see the wiki:
https://en.wikipedia.org/wiki/Taxicab geometry) and the bus metric (also known as the British Rail metric, on page 94 here:
https://www.math.ucdavis.edu/~hunter/m125a/intro analysis ch7.pdf). Show that a continuous function from Calculus 1 is a continuous function in the standard topology of the real line.

Feb 10 Gluing and cutting spaces: Quotient Spaces: Reading [PS] pgs 20-21
4) \qquad ENUMERATE THE CUT POINTS, NON-CUT-POINTS, AND THE HOMEOMORPHISM CLASSES OF THE LETTERS IN THIS SENTENCE.

Feb 17 Reading [PS] pgs 44-51
5) \qquad Surfaces: Figure out what you get by gluing some surfaces by hand--start with polygons and identify edges. [Link to worksheet: http://www.math.uakron.edu/~sf34/class home/topo/gluing.pdf .]

Feb 24 Reading [AT] pgs 1-10
6) \qquad Euler characteristic, genus: Find the Euler characteristic of a genus-n surface with k distinct boundary components. Find the Euler characteristic of an n dimensional polytope.

March 2 Homotopy groups. Reading [AT] pgs 21-39
7) \qquad Find the fundamental groups of the circle, sphere, torus, Klein bottle, two-holed torus, punctured torus and thrice punctured sphere.

March 9 Reading [AT] pgs 40-55
8) \qquad Figure out the fundamental groups for some knot complements: the Knot Groups for the trefoil and the figure eight, and one more.

March 16 Reading [AT] pgs 339-340
9) \qquad Higher homotopy: What is the definition of the homotopy group $\pi_{2}(X$, $\left.\mathrm{x}_{0}\right)$. Define $\pi_{n}\left(\mathrm{X}, \mathrm{x}_{0}\right)$. Show that $\pi_{2}\left(\mathrm{X}, \mathrm{x}_{0}\right)$ is abelian. What is the open problem of homotopy for the spheres?

March 30 Homology groups. Reading [AT] pgs 95-107
10) \qquad Find the homology groups of the circle, sphere, torus, Klein bottle and projective plane.

April 6 Reading [AT] pgs 137-143, pgs 5-8
11) \qquad Use Simplicial and Cellular complexes, simplicial or cellular homology to calculate homology groups. Find the homology groups of the two-holed torus, punctured torus, thrice punctured sphere and 3-torus.

April 13 Reading [AT] pgs 149-159
12) \qquad Calculate (maybe using Mayer-Vietoris) the real homology sequences of: the solid 3d-ball with a toroidal hole (missing a torus-shaped solid), the solid torus with a missing 3-ball, and the solid torus with a toroidal hole.

April 20 Polytopes from topologies. Reading Graph Associahedra pgs 1-8
13) \qquad Define graph tubings in terms of topological bases on nodes in a graph. Create 3 examples, on two different graphs, of a graph tubing. List the open sets.

April 27 Spaces of Trees. Reading Tree spaces pgs 9-24
14) \qquad Define Billera Holmes Vogt (BHV) space, Balanced Minimal Evolution (BME) polytope

May 4 Spaces of Networks. Reading Network spaces pgs 2-13
15) \qquad Define the spaces of networks CSN_n and £_n

