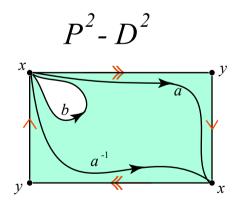

From this picture and those below we can find several fundamental groups.


If just P,² we don't have b, so a is the only generator and the relation is $a = a^{-1}$. $\langle a | a = a^{-1} \rangle$ Thus the group is the integers mod 2, where 1+1 = 0. If $P^2 - D^2$, we have generators a, b, and relation $ba = a^{-1}$. $\langle a, b | ba = a^{-1} \rangle$

Exercise: We know that $P^2 \# P^2 = K^2$ so find an isomorphism from this group to the one we found in class!

If $P^2 \# P^2$, we have generators *a*, *b*, *c* and relations $ba = a^{-1}$ and $bc = c^{-1}$.

 $\langle a, b, c | ba = a^{-1}, bc = c^{-1} \rangle$

