
\rightarrow Call the line segments a, b; corners x, y. A is the interior 2-cell.
\rightarrow In the homology groups we get to use cells (disks) like $D^{0}, D^{\prime}, D^{2}, D^{3}$ as generators: they donit have to be loops. (like in π_{i})
\rightarrow Also, we start by requiring that the group operation is commutative, like + , so abelian groups only. (But: the operation is not concatenation of loops anymore, as in π_{1})
\rightarrow So, we want a ∂ function on groups that does what it intuitively should. The Key is to use an orientation of the disk. we pick counter clockwise.

So, for a 2-cell, the boundary is the same thing as the relation in the fundamental group, in the format where it is solved for e. It's just written in additive notation. Again, we pick a starting point, which is arbitrary.

We need to define boundary for more than just 2-cells...
And we want to ensure that

$$
\partial(\partial(A))=0
$$

To do that, we define the boundary ∂ on line segments $\underset{\text { with orientation }}{ } \rightarrow 0$
$\partial(a)=x-y$ (we choose to make the anow point negative to positive)

Note: we are already using D° : (points) as generators of a group: we'll describe that soon!

Now, ∂ is defined to be homomorphism, in this case we can say ∂ is linear.

$$
\begin{aligned}
\partial(\partial(A)) & =\partial(-a+b-a+b) \\
& =-\partial(a)+\partial(b)-\partial(a)+\partial(b) \\
& =-(x-y)+x-y-(x-y)+x-y \\
& =0
\end{aligned}
$$

Note: the arrows here don't mean gluing, they are just arbitrary orientations. For the 2-cell we chose counterclockwise again, but it works either way.
Ex: $\partial\left(\partial\left(D^{2}\right)\right)=\partial(c)+\partial(b)-\partial(a)=y-x+z \cdot y-(z-x)=0$

Given a space S, found as a
cell complex made from points D°, Tine segments $D^{\prime}, 2$-disks D^{2}, etc..., D^{n} (once glued into S^{\prime}, there n-disks are 'called ncellls) we say the n-chains are linear combinations of the n-cells.

For now we are using integer coefficients.
Let $C_{n}(S)$ be the tree abelian group of n-chains. That means C_{n} is

That means that elements of C_n are finite linear combinations of the n-cells, with integer coefficients, and the operation is addition. -jos generated by the n-cells of S, and is commutative. "Free" means no relations other than $x x^{-1}=e$, which we write $x-x=0$ since the operation is + .

There are two kinds of important chains:
Note: n is the dimension,
so now there are "cycles"
of any dimension, not just loops. Also, its the group-theory boundary, and $0+0=0$. So although things that look like a loop, or a sphere, or a point are cycles, so are things like a pair of loops or a bunch of disconnected points or several spheres sharing
n-cycles: these are n-chains that have 0 boundary That is, finding the boundary gives 0 .
n - boundaries: these are n-chains that are the boundary of found them a higher dimensional chain. by taking a boundary.
sides like a bubble cluster.
Note: $\frac{\text { boundaries are special cycles }}{\partial^{2}}$, since $\partial(\partial(x))$ $=0$. (he say $\partial^{2}=0$, the 0 map).

- $b-a+b-a$ is a 1 -cycle and a l-boundary.
- $b-a$ is al-cycle, So is 7a-7b
but not a l-boundary

$$
\partial(b-a)=x-y-(x-y)=0
$$

- $b+2 a$ is neither
- x by itself is a 0 -cycle but not a 0 -boundary
- $x-y$ is both a 0 -cycle and a 0 -boundary \longleftarrow So is $5 y-5 x$
- 0 , the empty chain is both a cycle and a boundary ($\left.C_{-1}=0\right)$
- $3 x+2 y$ is a 0 -cycle but not a boundary.
- A is not a cycle, and not a boundary.

Big picture for a space S :
We add a subscript to ∂ to denote dim,

$$
\cdots \longrightarrow C_{3}(S) \xrightarrow{\partial_{3}} C_{2}(S) \xrightarrow{\partial_{2}} C_{1}(S) \xrightarrow{\partial_{1}} C_{0}\left(S^{\prime}\right) \xrightarrow{\partial_{0}} 0
$$

$$
\text { chain complex. } \quad \partial^{2}=\partial_{n}+\partial_{n+1}=0
$$

The n-cycles are the n-chains that
get sent to 0 by ∂_{n}

$$
\text { So } \left.\{n \text {-cydes }\}=\operatorname{ker}\left(\partial_{n}\right) \text {. (or null-space of } \partial_{n}\right)
$$

The n-boundoines are the images of $(n+1)$-chains
So $\{n$-boundaries $\}=\operatorname{Im}\left(\partial_{n+1}\right)$. (or range ∂_{n+1})
Both of these are subgroups, for subrector spaces if we use \mathbb{R} for coefficients). And $\operatorname{Im}\left(\partial_{n+1}\right) \leq \operatorname{ker}\left(\partial_{n}\right)$ since $\partial^{2}=0$.
Define $H_{n}(S)=\operatorname{Ker}\left(\partial_{n}\right) /_{I_{m}\left(\partial_{n+1}\right)}$
This is the quotient group.
It is seen by setting all the elements of $\operatorname{Im}\left(\partial_{n+1}\right)$ equal to 0 , in the larger group $\operatorname{ker}\left(\partial_{n}\right)$.

Note: we need a scheme for finding ∂_{3} of 3-disks: simplices are useful!

