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Abstract

Lyubashenko has described enriched 2–categories as categories en-
riched over V–Cat, the 2–category of categories enriched over a symmetric
monoidal V. Here I generalize this to a k–fold monoidal V. The latter
is defined as by Balteanu, Fiedorowicz, Schwänzl and Vogt but with the
addition of making visible the coherent associators αi. The symmetric
case can easily be recovered. The introduction of this paper proposes a
recursive definition of V–n–categories and their morphisms. Then I con-
sider the special case of V–2–categories and give the details of the proof
that with their morphisms these form the structure of a 3–category.

1 Introduction

There is an ongoing massive effort to link category theory and geometry, just a
part of the broad undertaking known as categorification as described by Baez
and Dolan in [Baez and Dolan, 1998]. This effort has as a partial goal that
of understanding the categories and functors that correspond to loop spaces
and their associated topological functors. Progress towards this goal has been
advanced greatly by the recent work of Balteanu, Fiedorowicz, Schwänzl, and
Vogt in [Balteanu et.al, 2003] where they show a direct correspondence between
k-fold monoidal categories and k-fold loop spaces through the categorical nerve.

As I pursued part of a plan to relate the enrichment functor to topology, I
noticed that the concept of higher dimensional enrichment would be important
in its relationship to double, triple and further iterations of delooping. The con-
cept of enrichment over a monoidal category is well known, and enriching over
the category of categories enriched over a monoidal category is defined, for the
case of symmetric categories, in the paper on A∞–categories by Lyubashenko,
[Lyubashenko, 2003]. It seems that it is a good idea to generalize his definition
first to the case of an iterated monoidal base category and then to define V–
(n+1)–categories as categories enriched over V–n–Cat, the (k−n)–fold monoidal
strict (n + 1)–category of V–n–categories where k < n ∈ N. Of course the facts
implicit in this last statement must be verified. At each stage of successive
enrichments, the number of monoidal products should decrease and the cate-
gorical dimension should increase, both by one. This is motivated by topology.
When we consider the loop space of a topological space, we see that paths (or
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1–cells) in the original are now points (or objects) in the derived space. There is
also now automatically a product structure on the points in the derived space,
where multiplication is given by concatenation of loops. Delooping is the in-
verse functor here, and thus involves shifting objects to the status of 1–cells and
decreasing the number of ways to multiply.

The concept of a k–fold monoidal strict n–category is easy enough to de-
fine as a tensor object in a category of (k − 1)–fold monoidal n–categories with
cartesian product. Thus the products and accompanying associator and inter-
change transformations are strict bi–n–functors and n–natural transformations
respectively. That this sort of structure ((k − n)–fold monoidal strict n + 1
category) is possessed by V–n–Cat for V k–fold monoidal is shown for n = 1
and all k in my paper [Forcey, 2003]. A full inductive proof covering all n, k is
a work in progress, and this paper fills in one of the gaps; specifically showing
how the categorical dimension is increased when the base 2–category is V–Cat.
I hope to see eventually how to take the long proof contained here and turn it
into part (1) of the induction step in the full proof. Part (2), showing how the
number of products is decreasing, should actually be easier since rather than
involving new structure at each step it only seems to require a repeating of the
axiom checking that is done in the initial case. This is described for the case
of V–2–Cat being (k − 2)–fold monoidal in my previously mentioned paper. In
general the decrease is engineered by a shift in index–we define new products
V–n–Cat×V–n–Cat → V–n–Cat by using cartesian products of object sets and
letting hom–objects of the ith product of enriched n–categories be the (i+ 1)th
product of hom–objects of the component categories. Symbolically,

(A⊗(n)
i B)((A,B), (A′, B′)) = A(A,A′) ⊗(n−1)

i+1 B(B,B′).

The superscript (n) is not necessary since the product is defined by context,
but I insert it to make clear at what level of enrichment the product is occur-
ring. Defining the necessary natural transformations for this new product as
“based upon” the old ones, and the checking of the axioms that define their
structure is briefly mentioned later on in this paper and more fully described in
[Forcey, 2003] for certain cases.

The definition of a category enriched over V–n–Cat is simply stated by de-
scribing the process as enriching over V–n–Cat with the first of the k−n ordered
products. In detail this means that

Definition 1 A (small, strict) V–(n+1)–category U consists of

1. A set of objects |U |
2. For each pair of objects A,B ∈ |U | a V–n–category U(A,B).

3. For each triple of objects A,B,C ∈ |U | a V–n–functor

MABC : U(B,C) ⊗(n)
1 U(A,B) → U(A,C)
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4. For each object A ∈ |U | a V–n–functor

J A : I(n) → U(A,A)

5. Axioms: The V–n–functors that play the role of composition and identity
obey commutativity of a pentagonal diagram (associativity axiom) and of
two triangular diagrams (unit axioms). This amounts to saying that the
functors given by the two legs of each diagram are equal.

• α(n)
��

MBCD⊗(n)
1 1

����
��
��
��
��
��
�

•

1⊗(n)
1 MABC

���
��
��
��
��
��
��

•

MABD

���
��

��
��

��
��

��
��

� •

MACD

����
��
��
��
��
��
��
��

•

I(n) ⊗(n)
1 U(A,B)

=

���
��

��
��

��

J B⊗(n)
1 1

��

U(A,B) ⊗(n)
1 I(n)

1⊗(n)
1 J A

��

=
�����

��
��
��

U(A,B)

•
MABB�����

		���

•
MAAB�����



���

This definition requires that there be a definitions of the unit I(n) and of
V–n–functors in place. Since the axioms talk about equality, the V–n–natural
transformations and various higher morphisms are not directly required. They
will be utilized however, as soon as the word strict is removed from Definition 1.
I will sketch definitions of morphisms in a moment. First, since we hope to
realize monoidal structure on V–n–Cat, it needs a recursively defined unit V–
n–category.

Definition 2 The unit object in V–n–Cat is the V–n–category I(n) with one
object 0 and with I(n)(0,0) = I(n−1), where I(n−1) is the unit object in V–
(n − 1)–Cat. Of course we let I(0) be I in V. Also M000 = J 0 = 1I (n) .

Now we can define the morphisms:

Definition 3 For two V–n–categories U and W a V–n–functor T : U → W
is a function on objects |U | → |W | and a family of V–(n − 1)–functors TUU ′ :
U(U,U ′) → W(TU, TU ′). These latter obey commutativity of the usual dia-
grams.
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1. For U,U ′, U ′′ ∈ |U |

• MUU′U′′ ��

TU′U′′⊗(n−1)
1 TUU′

��

•

TUU′′

��• M(T U)(T U′)(T U′′)

�� •

2.
•

TUU

��

I(n−1)

J U

��													

J T U ��




















•
Here a V–0–functor is just a morphism in V.

The 1–cells we have just defined play a special role in the definition of a
general k–cell for k ≥ 2.

Definition 4 A V–n–k–cell α between (k − 1)–cells ψk−1 and φk−1, written

α : ψk−1 → φk−1 : ψk−2 → φk−2 : ... : ψ2 → φ2 : F → G : U → W
where F and G are V–n–functors, is a function sending each U ∈ |U | to a
V–((n − k) + 1)–functor

αU : I((n−k)+1) → W(FU,GU)(ψ2
U (0), φ2

U (0)...(ψk−1
U (0), φk−1

U (0))

in such a way that we have commutativity of the following diagram. Note that
the final (curved) equal sign is implied recursively by the diagram for the (k−1)–
cells.
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W (FU ′, GU ′)(ψ2
U′(0), φ2

U′(0))...(ψk−1
U′ (0), φk−1

U′ (0))

⊗((n−k)+1)
k−1 W (FU, FU ′)(F (x2), F (y2))...(F (xk−1), F (yk−1))

M

���
����

����
����

����
����

�

I ((n−k)+1) ⊗((n−k)+1)
k−1 U (U, U ′)(x2, y2)...(xk−1, yk−1)

αU′⊗((n−k)+1)
k−1 F

��																	
W (FU, GU ′)(ψ2

U′(0)F (x2), φ
2
U′(0)F (y2))...(ψ

k−1
U′ (0)F (xk−1), φ

k−1
U′ (0)F (yk−1))

U (U, U ′)(x2, y2)...(xk−1, yk−1)

=

���������������

=

���
��

��
��

��
��

��

U (U, U ′)(x2, y2)...(xk−1, yk−1) ⊗((n−k)+1)
k−1 I ((n−k)+1)

G⊗((n−k)+1)
k−1 αU

����
���

���
���

���
���

�
W (FU, GU ′)(G(x2)ψ

2
U (0), G(y2)φ

2
U (0)...(G(xk−1)ψ

k−1
U (0), G(yk−1)φ

k−1
U (0))

W (GU, GU ′)(G(x2), G(y2))...(G(xk−1), G(yk−1))

⊗((n−k)+1)
k−1 W (FU, GU)(ψ2

U (0), φ2
U (0)...(ψk−1

U (0), φk−1
U (0))

M

��

Thus for a given value of n there are k–cells up to k = n + 1, making V–n–
Cat a potential (n+1)–category. This last definition is best grasped by looking
at examples. The cases for n = 1, 2 are given in detail in the following section.
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2 Review of Definitions

In this section I briefly review the definitions of a category enriched over a
monoidal category V, a category enriched over an iterated monoidal category,
and an enriched 2–category. I begin with the basic definitions of enrichment,
included due to how often they are referred to and followed as models in the
rest of the paper. This first set of definitions can be found with more detail in
[Kelly, 1982] and [Eilenberg and Kelly, 1965].

Definition 5 For our purposes a monoidal category is a category V together
with a functor ⊗ : V × V → V and an object I such that

1. ⊗ is associative up to the coherent natural transformations α. The coher-
ence axiom is given by the commuting pentagon

((U ⊗ V ) ⊗ W ) ⊗ X
αUV W ⊗1X ��

α(U⊗V )W X

����
��
��
��
��
��
��
��

(U ⊗ (V ⊗ W )) ⊗ X

αU(V ⊗W )X

���
��

��
��

��
��

��
��

�

(U ⊗ V ) ⊗ (W ⊗ X)

αUV (W⊗X)



















��



















U ⊗ ((V ⊗ W ) ⊗ X)

1U⊗αV W X
			

			
			

			

��			
			

			
			

U ⊗ (V ⊗ (W ⊗ X))

2. I is a strict 2-sided unit for ⊗.

Definition 6 A (small) V –Category A is a set |A| of objects, a hom-object
A(A,B) ∈ |V| for each pair of objects of A, a family of composition morphisms
MABC : A(B,C) ⊗A(A,B) → A(A,C) for each triple of objects, and an iden-
tity element jA : I → A(A,A) for each object. The composition morphisms
are subject to the associativity axiom which states that the following pentagon
commutes

(A(C,D) ⊗A(B,C)) ⊗A(A,B) α ��

M⊗1������
����

����
��

A(C,D) ⊗ (A(B,C) ⊗A(A,B))
1⊗M

�����
����

����
���

A(B,D) ⊗A(A,B)
M

�������
������

������
������

����
A(C,D) ⊗A(A,C)

M
��������

������
������

������
���

A(A,D))
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and to the unit axioms which state that both the triangles in the following
diagram commute

I ⊗A(A,B)
=

���
����

����
����

�

jB⊗1

��

A(A,B) ⊗ I

1⊗jA

��

=
������

����
����

����

A(A,B)

A(B,B) ⊗A(A,B)

MABB

������������������
A(A,B) ⊗A(A,A)

MAAB

������������������

Definition 7 For V–categories A and B, a V–functor T : A → B is a function
T : |A| → |B| and a family of hom − object morphisms TAB : A(A,B) →
B(TA, TB) in V indexed by pairs A,B ∈ |A|. The usual rules for a functor
that state T (f ◦ g) = Tf ◦ Tg and T1A = 1TA become in the enriched setting,
respectively, the commuting diagrams

A(B,C) ⊗A(A,B) M ��

T⊗T

��

A(A,C)

T

��
B(TB, TC) ⊗ B(TA, TB) M �� B(TA, TC)

and
A(A,A)

TAA

��

I

jA

�����������������

jT A ����
���

���
���

���
�

B(TA, TA).

V–functors can be composed to form a category called V–Cat. This category
is actually enriched over Cat, the category of (small) categories with cartesian
product.

Definition 8 For V–functors T, S : A → B a V–natural transformation α :
T → S : A → B is an |A|–indexed family of morphisms αA : I → B(TA, SA)
satisfying the V–naturality condition expressed by the commutativity of
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I ⊗A(A,B)
αB⊗TAB �� B(TB, SB) ⊗ B(TA, TB)

M

�����
����

����
����

A(A,B)

=

�������������

=
����

���
���

���
B(TA, SB)

A(A,B) ⊗ I
SAB⊗αA

�� B(SA, SB) ⊗ B(TA, SA)

M

�����������������

For two V–functors T, S to be equal is to say TA = SA for all A and for
the V–natural isomorphism α between them to have components αA = jTA.
This latter implies equality of the hom–object morphisms: TAB = SAB for all
pairs of objects. The implication is seen by combining the second diagram in
Definition 6 with all the diagrams in Definitions 7 and 8.

The fact that V–Cat has the structure of a 2–category is demonstrated in
[Kelly, 1982]. Now we review the transfer to enriching over a k–fold monoidal
category. The latter sort of category was developed and defined in [Balteanu et.al, 2003].
The authors describe its structure as arising from its description as a monoid in
the category of (k − 1)–fold monoidal categories. Here is that definition altered
only slightly to make visible the coherent associators as in [Forcey, 2003]. In
that paper I describe its structure as arising from its description as a tensor
object in the category of (k − 1)–fold monoidal categories

Definition 9 An n-fold monoidal category is a category V with the following
structure.

1. There are n distinct multiplications

⊗1,⊗2, . . . ,⊗n : V × V → V
for each of which the associativity pentagon commutes

((U ⊗i V ) ⊗i W ) ⊗i X
αi

UV W ⊗i1X ��

αi
(U⊗iV )W X

����
��
��
��
��
��
��
��
�

(U ⊗i (V ⊗i W )) ⊗i X

αi
U(V ⊗iW )X

���
��

��
��

��
��

��
��

��

(U ⊗i V ) ⊗i (W ⊗i X)

αi
UV (W⊗iX)

����
���

���
���

���
���

���
���

���
�

U ⊗i ((V ⊗i W ) ⊗i X)

1U⊗iα
i
V W X

�����
���

���
���

���
���

���
���

���

U ⊗i (V ⊗i (W ⊗i X))
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V has an object I which is a strict unit for all the multiplications.

2. For each pair (i, j) such that 1 ≤ i < j ≤ n there is a natural transforma-
tion

ηij
ABCD : (A ⊗j B) ⊗i (C ⊗j D) → (A ⊗i C) ⊗j (B ⊗i D).

These natural transformations ηij are subject to the following conditions:

(a) Internal unit condition: ηij
ABII = ηij

IIAB = 1A⊗jB

(b) External unit condition: ηij
AIBI = ηij

IAIB = 1A⊗iB

(c) Internal associativity condition: The following diagram commutes

((U ⊗j V ) ⊗i (W ⊗j X)) ⊗i (Y ⊗j Z)
ηij

UV W X
⊗i1Y ⊗jZ

��

αi

��

(
(U ⊗i W ) ⊗j (V ⊗i X)

) ⊗i (Y ⊗j Z)

ηij

(U⊗iW )(V ⊗iX)Y Z

��
(U ⊗j V ) ⊗i ((W ⊗j X) ⊗i (Y ⊗j Z))

1U⊗jV ⊗iη
ij
W XY Z

��

((U ⊗i W ) ⊗i Y ) ⊗j ((V ⊗i X) ⊗i Z)

αi⊗jαi

��
(U ⊗j V ) ⊗i

(
(W ⊗i Y ) ⊗j (X ⊗i Z)

) ηij

UV (W⊗iY )(X⊗iZ) �� (U ⊗i (W ⊗i Y )) ⊗j (V ⊗i (X ⊗i Z))

(d) External associativity condition: The following diagram commutes

((U ⊗j V ) ⊗j W ) ⊗i ((X ⊗j Y ) ⊗j Z)
ηij

(U⊗jV )W (X⊗jY )Z
��

αj⊗iα
j

��

(
(U ⊗j V ) ⊗i (X ⊗j Y )

) ⊗j (W ⊗i Z)

ηij
UV XY

⊗j1W⊗iZ

��
(U ⊗j (V ⊗j W )) ⊗i (X ⊗j (Y ⊗j Z))

ηij

U(V ⊗jW )X(Y ⊗jZ)

��

((U ⊗i X) ⊗j (V ⊗i Y )) ⊗j (W ⊗i Z)

αj

��
(U ⊗i X) ⊗j

(
(V ⊗j W ) ⊗i (Y ⊗j Z)

) 1U⊗iX⊗jηij
V W Y Z �� (U ⊗i X) ⊗j ((V ⊗i Y ) ⊗j (W ⊗i Z))

(e) Finally it is required that for each triple (i, j, k) satisfying 1 ≤ i < j < k ≤
n the giant hexagonal interchange diagram commutes.
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((A ⊗k A′) ⊗j (B ⊗k B′)) ⊗i ((C ⊗k C′) ⊗j (D ⊗k D′))

η
jk

AA′BB′⊗iη
jk

CC′DD′
���

���
���

�����
���

���
η

ij

(A⊗kA′)(B⊗kB′)(C⊗kC′)(D⊗kD′)

���
���

���

����
���

���
�

((A ⊗j B) ⊗k (A′ ⊗j B′)) ⊗i ((C ⊗j D) ⊗k (C′ ⊗j D′))

ηik
(A⊗jB)(A′⊗jB′)(C⊗jD)(C′⊗jD′)

��

((A ⊗k A′) ⊗i (C ⊗k C′)) ⊗j ((B ⊗k B′) ⊗i (D ⊗k D′))

ηik
AA′CC′⊗jηik

BB′DD′

��
((A ⊗j B) ⊗i (C ⊗j D)) ⊗k ((A′ ⊗j B′) ⊗i (C′ ⊗j D′))

η
ij
ABCD

⊗kη
ij

A′B′C′D′

���
���

���

����
���

���
�

((A ⊗i C) ⊗k (A′ ⊗i C′)) ⊗j ((B ⊗i D) ⊗k (B′ ⊗i D′))

η
jk

(A⊗iC)(A′⊗iC′)(B⊗iD)(B′⊗iD′)
���

���
���

�����
���

���

((A ⊗i C) ⊗j (B ⊗i D)) ⊗k ((A′ ⊗i C′) ⊗j (B′ ⊗i D′))

The authors of [Balteanu et.al, 2003] remark that a symmetric monoidal
category is n-fold monoidal for all n. This they demonstrate by letting

⊗1 = ⊗2 = . . . = ⊗n = ⊗
and defining (associators added by myself)

ηij
ABCD = α−1 ◦ (1A ⊗ α) ◦ (1A ⊗ (cBC ⊗ 1D)) ◦ (1A ⊗ α−1) ◦ α

for all i < j. Here cBC : B⊗C → C⊗B is the symmetry natural transformation.
This provides the hint that enriching over a k–fold monoidal category is precisely
a generalization of enriching over a symmetric category. In the symmetric case,
to define a product in V–Cat, we need cBC in order to create a middle exchange
morphism m. To describe products in V–Cat for V k–fold monoidal we simply
use m = η.

Categories enriched over k–fold monoidal V are carefully defined in [Forcey, 2003],
where they are shown to be the objects of a (k − 1)–fold monoidal 2–category.
Here we need only the definitions. Simply put, a category enriched over a k–fold
monoidal V is a category enriched in the usual sense over (V,⊗1, I, α). The other
k − 1 products in V are used up in the structure of V–Cat. I will always denote
the product(s) in V–Cat with a superscript in parentheses that corresponds to
the level of enrichment of the components of their domain. The product(s) in
V should logically then have a superscript (0) but I have suppressed this for
brevity and to agree with my sources. For V k–fold monoidal we define the
ith product of V–categories A ⊗(1)

i B to have objects ∈ |A| × |B| and to have
hom–objects ∈ |V| given by

(A⊗(1)
i B)((A,B), (A′, B′)) = A(A,A′) ⊗i+1 B(B,B′).
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Immediately we see that V–Cat is (k− 1)–fold monoidal by definition. (The
full proof of this is in [Forcey, 2003].) The composition morphisms are

M(A,B)(A′,B′)(A′′,B′′) : (A⊗(1)
i B)((A′, B′), (A′′, B′′))⊗1(A⊗(1)

i B)((A, B), (A′, B′)) → (A⊗(1)
i B)((A, B), (A′′, B′′))

given by

(A⊗(1)
i B)((A′, B′), (A′′, B′′)) ⊗1 (A⊗(1)

i B)((A,B), (A′, B′))

(A(A′, A′′) ⊗i+1 B(B′, B′′)) ⊗1 (A(A,A′) ⊗i+1 B(B,B′))

η1,i+1

��
(A(A′, A′′) ⊗1 A(A,A′)) ⊗i+1 (B(B′, B′′) ⊗1 B(B,B′))

MAA′A′′⊗2MBB′B′′
��

(A(A,A′′) ⊗i+1 B(B,B′′))

(A⊗(1)
i B)((A,B), (A′′, B′′))

The identity element is given by j(A,B) = I = I ⊗i+1 I

jA⊗i+1jB

��
A(A,A) ⊗i+1 B(B,B)

(A⊗(1)
i B)((A,B), (A,B))

The unit object in V–1–Cat = V–Cat is the enriched category I(1) = I
where |I| = {0} and I(0, 0) = I. Of course M000 = 1I = j0.

That each product ⊗(1)
i thus defined is a 2–bi–functor V–Cat × V–Cat → V–

Cat is seen easily. Its action on enriched functors and natural transformations
is to form formal products using ⊗i+1 of their associated morphisms. That the
result is a valid enriched functor or natural transformation always follows from
the naturality of η.

Associativity in V–Cat must hold for each ⊗(1)
i . The components of the

2–natural isomorphism α(1)i

α
(1)i
ABC : (A⊗(1)

i B) ⊗(1)
i C → A⊗(1)

i (B ⊗(1)
i C)

are V–functors that send ((A,B),C) to (A,(B,C)) and whose hom-components

α
(1)i
ABC((A,B),C)((A′,B′),C′)

: [(A⊗(1)
i B)⊗(1)

i C](((A, B), C), ((A′, B′), C′)) → [A⊗(1)
i (B⊗(1)

i C)]((A, (B, C)), (A′, (B′, C′)))

11



are given by

α
(1)i
ABC((A,B),C)((A′,B′),C′)

= αi+1
A(A,A′)B(B,B′)C(C,C′).

Now for the interchange 2–natural transformations η(1)ij for j ≥ i + 1. We
define the component morphisms η

(1)i,j
ABCD that make a 2–natural transforma-

tion between 2–functors. Each component must be an enriched functor. Their
action on objects is to send ((A,B), (C,D)) ∈

∣
∣
∣(A⊗(1)

j B) ⊗(1)
i (C ⊗(1)

j D)
∣
∣
∣ to

((A,C), (B,D)) ∈
∣
∣
∣(A⊗(1)

i C) ⊗(1)
j (B ⊗(1)

i D)
∣
∣
∣. The hom–object morphisms are

given by

η
(1)i,j
ABCD(ABCD)(A′B′C′D′)

= ηi+1,j+1
A(A,A′)B(B,B′)C(C,C′)D(D,D′).

That the axioms regarding the associators and interchange transformations are
all obeyed is established in [Forcey, 2003].

We now define categories enriched over V–Cat. These are defined for the
symmetric case in [Lyubashenko, 2003]. Here as in [Forcey, 2003] the definition
of V–2–category is generalized for V a k–fold monoidal category with k ≥ 2.
The definition for symmetric monoidal V can be easily recovered just by letting
⊗1 = ⊗2 = ⊗, α2 = α1 = α and η = m.

Definition 10 A (small, strict) V–2–category U consists of

1. A set of objects |U |
2. For each pair of objects A,B ∈ |U | a V–category U(A,B).

Of course then U(A,B) consists of a set of objects (which play the role of
the 1–cells in a 2–category) and for each pair f, g ∈ |U(A,B)| an object
U(A,B)(f, g) ∈ V (which plays the role of the hom–set of 2–cells in a 2–
category.) Thus the vertical composition morphisms of these hom2–objects
are in V:

Mfgh : U(A,B)(g, h) ⊗1 U(A,B)(f, g) → U(A,B)(f, h)

Also, the vertical identity for a 1-cell object a ∈ |U(A,B)| is ja : I →
U(A,B)(a, a). The associativity and the units of vertical composition are
then those given by the respective axioms of enriched categories.

3. For each triple of objects A,B,C ∈ |U | a V–functor

MABC : U(B,C) ⊗(1)
1 U(A,B) → U(A,C)

Often I repress the subscripts. We denote M(h, f) as hf .

The family of morphisms indexed by pairs of objects (g, f), (g′, f ′) ∈
∣
∣
∣U(B,C) ⊗(1)

1 U(A,B)
∣
∣
∣

furnishes the direct analogue of horizontal composition of 2-cells as can be
seen by observing their domain and range in V:

MABC(g,f)(g′,f′) : [U(B,C)⊗(1)
1 U(A,B)]((g, f), (g′, f ′)) → U(A,C)(gf, g′f ′)

12



Recall that

[U(B,C)⊗(1)
1 U(A,B)]((g, f), (g′, f ′)) = U(B,C)(g, g′)⊗2 U(A,B)(f, f ′).

4. For each object A ∈ |U | a V–functor

JA : I → U(A,A)

We denote JA(0) as 1A.

5. (Associativity axiom of a strict V–2–category.) We require a commuting
pentagon. Since the morphisms are V–functors this amounts to saying that
the functors given by the two legs of the diagram are equal. For objects we
have the equality (fg)h = f(gh).

For the hom–object morphisms we have the following family of commuting
diagrams for associativity, where the first bullet represents

[(U(C,D) ⊗(1)
1 U(B,C)) ⊗(1)

1 U(A,B)](((f, g), h), ((f ′, g′), h′))

and the reader may fill in the others

• α2
��

MBCD(f,g)(f′,g′)⊗21

����
��
��
��
��
��
�

•

1⊗2MABC(g,h)(g′,h′)

���
��
��
��
��
��
��

•

MABD(fg,h)(f′g′,h′)

���
��

��
��

��
��

��
��

� •

MACD(f,gh)(f′,g′h′)

����
��
��
��
��
��
��
��

•
The heuristic diagram for this commutativity is

A

h

��

h′

�� B

g

��

g′

�� C

f

��

f ′

�� D

6. (Unit axioms of a strict V–2–category.) We require commuting triangles.
For objects we have the equality f1A = f = 1Bf. For the unit morphisms
we have that the triangles in the following diagram commute.

13



[I ⊗(1)
1 U(A,B)]((0, f), (0, g))

=

�����
����

����
����

JB00⊗21

��

[U(A,B) ⊗(1)
1 I]((f, 0), (g, 0))

1⊗2JA00

��

=
������

����
����

���

U(A,B)(f, g)

[U(B,B) ⊗(1)
1 U(A,B)]((1B , f), (1B , g))

MABB(1B,f)(1B,g)����

�������

[U(A,B) ⊗(1)
1 U(A,A)]((f, 1A), (g, 1A))

MAAB(f,1A)(g,1A)����

  �����

The heuristic diagrams for this commutativity are

11A
!!

A

1A

��

1A

�� A

f

��

g

�� B

=

A

f

��

g

�� B

=
11B
!!

A

f

��

g

�� B

1B

��

1B

�� B

Consequences of V–functoriality of M and J : First the V–functoriality of M
implies that the following (expanded) diagram commutes

(U (B, C)(k, m) ⊗1 U (B, C)(h, k)) ⊗2 (U (A, B)(g, l) ⊗1 U (A, B)(f, g))

Mhkm⊗2Mfgl

���
��

��
��

��
��

��
��

��

(U (B, C)(k, m) ⊗2 U (A, B)(g, l)) ⊗1 (U (B, C)(h, k) ⊗2 U (A, B)(f, g))

MABC(k,g)(m,l)
⊗1MABC(h,f)(k,g)

��

η1,2

�����������������������������
U (B, C)(h, m) ⊗2 U (A, B)(f, l)

MABC(h,f)(m,l)

��
U (A, C)(kg, ml) ⊗1 U (A, C)(hf, kg)

M(hf)(kg)(ml) �� U (A, C)(hf, ml)

The heuristic diagram is

A

f

""g ��

l

##B

h

""k ��

m

##C

14



Secondly the V–functoriality of M implies that the following (expanded)
diagram commutes

U(B,C)(g, g) ⊗2 U(A,B)(f, f)

MABC(g,f)(g,f)

��

I

jg⊗2jf

�����������������������

jgf ���
����

����
����

����
��

U(A,C)(gf, gf)

The heuristic diagram here is

1f

!!
1g

!!
A

f

��

f

�� B

g

��

g

�� C
=

1gf

!!
A

gf

��

gf

�� C

In addition, the V–functoriality of J implies that the following (expanded)
diagram commutes

I(0, 0)

JA00

��

I

j0

�������������������

j1A �����
���

���
���

���
�

U(A,A)(1A, 1A)

Which means that

JA00 : I → U(A,A)(1A, 1A) = j1A
.
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3 The 3–category of enriched 2–categories

As in [Forcey, 2003], I now describe the (strict) 3–category V–2–Cat (or V–Cat–
Cat) whose objects are (strict, small) V–2–categories.

Definition 11 For two V–2–categories U and W a V–2–functor T : U → W is
a function on objects |U | → |W | and a family of V–functors TUU ′ : U(U,U ′) →
W(TU, TU ′). These latter obey commutativity of the usual diagrams.

1. For U,U ′, U ′′ ∈ |U |

• MUU′U′′ ��

TU′U′′⊗(1)
1 TUU′

��

•

TUU′′

��• M(T U)(T U′)(T U′′)
�� •

2.
•

TUU

��

I

JU

���������������

JT U
����

���
���

���
��

•
For objects this means that TU ′U ′′(f)TUU ′(g) = TUU ′′(fg) and TUU (1U ) = 1TU .
The reader should unpack both diagrams into terms of hom–object morphisms
and V–functoriality. The fact that the hom–object morphisms are actually hom–
category V–functors corresponds to the need for V–2–functors to preserve all the
structure that exists, including the vertical composition.

Definition 12 A V–2–natural transformation α : T → S : U → W is a func-
tion sending each U ∈ |U | to a V–functor αU : I → W(TU, SU) in such a way
that we have commutativity of

I ⊗(1)
1 U(U,U ′)

αU′⊗(1)
1 TUU′ �� W(TU ′, SU ′) ⊗(1)

1 W(TU, TU ′)
M

���
����

����
����

�

U(U,U ′)

=
��           

=
��!!

!!!
!!!

!!!
W(TU, SU ′)

U(U,U ′) ⊗(1)
1 I

SUU′⊗(1)
1 αU

�� W(SU, SU ′) ⊗(1)
1 W(TU, SU)

M
��

16



Unpacking this a bit, we see that αU is an object q = αU (0) in the V–category
W(TU, SU) and a morphism αU00 : I → W(TU, SU)(q, q). By the V–functoriality
of αU we see that αU00 = jq. The axiom then states that q′TUU ′(f) = SUU ′(f)q
for all f , and that

M(TU)(TU ′)(SU ′)(q′,T
UU′ (f))(q′,T

UU′ (g))
◦(jq′⊗2TUU ′

fg
) = M(TU)(SU)(SU ′)(S

UU′ (f),q)(S
UU′ (g),q)

◦(SUU ′
fg
⊗2jq)

The heuristic picture (following the pattern set in the definition of a V–2–
category) is as follows:

TU

Tf

��

Tg

�� TU ′ q′
�� SU ′

=
TU

q �� SU

Sf

��

Sg

�� SU ′

Definition 13 Given two V–2–natural transformations a V–modification be-
tween them µ : θ → φ : T → S : U → W is a function that sends each object
U ∈ |U | to a morphism µU : I → W(TU, SU)(θU (0), φU (0)) in such a way that
the following diagram commutes. (Let θU (0) = q, φU (0) = q̂, θU ′(0) = q′ and
φU ′(0) = q̂′.)

W(TU ′, SU ′)(q′, q̂′) ⊗2 W(TU, TU ′)(TUU ′(f), TUU ′(g))
M

���
����

����
����

��

I ⊗2 U(U,U ′)(f, g)

µU′⊗2TUU′
fg

����������������
W(TU, SU ′)(q′TUU ′(f), q̂′TUU ′(g))

U(U,U ′)(f, g)

=

$$""""""

=

%%#
##
##
#

U(U,U ′)(f, g) ⊗2 I
SUU′

fg
⊗2µU

�����
���

���
���

��
W(TU, SU ′)(SUU ′(f)q, SUU ′(g)q̂)

W(SU, SU ′)(SUU ′(f), SUU ′(g)) ⊗2 W(TU, SU)(q, q̂)

M
��������������������

Notice that since θU00 = jθU (0) for all V–2–natural transformations θ we have
that the morphism µU seen as a “family” consisting of a single morphism (cor-
responding to 0 ∈ |I|) constitutes a V–natural transformation from θU to φU .
Occasionally I reflect this by denoting µU as µU 0.
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The heuristic picture here is:

TU

Tf

��

Tg

�� TU ′

q′

��

q̂′

�� SU ′
=

TU

q

��

q̂

�� SU

Sf

��

Sg

�� SU ′

Theorem 1 V–2–categories, V–2–functors, V–2–natural transformations and
V–modifications form a 3–category called V–2–Cat.

Proof (Part 1.) Recall that a 3–category is a category enriched over 2–Cat.
This is expanded in terms of axioms in [Borceux, 1994]. Our objects are V–2–
categories. There are two parts of the proof. In part 1 we show that for every
pair U ,W of V–2–categories we have a 2–category made up of V–2–functors, V–
2–natural transformations and V–modifications. For now then V–2–functors are
the 0–cells, V–2–natural transformations are the 1–cells, and V–modifications
are the 2–cells as in the following picture.

U
F
��

µ

!!

U
G
��

γ

""

ρ

##

W W

Throughout I will use the following notation: Composition along a V–2–natural
transformation will be indicated with “◦.” Composition along a V–2–functor
will be indicated with “∗.” Composition along a V–2–category will be indicated
by juxtaposition.

Composition of V–2–natural transformations γ : T → S and β : S → R
along a V–2–functor S is given by

(β ∗ γ)U = I = I ⊗(1)
1 I

βU⊗(1)
1 γU

��
W(SU,RU) ⊗(1)

1 W(TU, SU)

M
��

W(TU,RU)

Let βU (0) = q̂ and γU (0) = q̌. By expanding the definition of this composi-
tion we see that (β ∗ γ)U (0) = q̂q̌ and that (β ∗ γ)U00 = jq̂q̌

Since it prefigures a similar proof for V–modifications, I include the proof
that this composition forms a valid V–2–natural transformation even though it
follows closely the analogous proof for V–natural transformations as in [Eilenberg and Kelly, 1965].
For β ∗ γ to be a V–2–natural transformation the exterior of the following dia-
gram must commute.
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(W
(S

U
′ ,

R
U

′ )
⊗(1

)
1

W
(T

U
′ ,

S
U

′ )
)
⊗(1

)
1

W
(T

U
,T

U
′ )

M
⊗

(1
)

1
1

��������������������

����������������������

α
(1

)1

��

(I
⊗(1

)
1

I)
⊗(1

)
1

U(
U

,U
′ )

(β
U

′⊗
(1

)
1

γ
U

′)
⊗

(1
)

1
T

U
U

′
� � � � � � � � � �

�� � � � � � � � � � �

W
(T

U
′ ,

R
U

′ )
⊗(1

)
1

W
(T

U
,T

U
′ )

M

&&$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

•
1
⊗

(1
)

1
(γ

U
′⊗

(1
)

1
T

U
U

′)
�� •

1
⊗

(1
)

1
M

����������������

��������������
I⊗

(1
)

1
U(

U
,U

′ )=

'' % % % % % % % % % % % % % % % %

β
U

′⊗
(1

)
1

1

���

��������

•

=

(( & & & & & & & & & & & & & & & &

=

))'''''''''''''
W

(S
U

′ ,
R

U
′ )
⊗(1

)
1

W
(T

U
,S

U
′ )

M�������������������

����������������������

•
1
⊗

(1
)

1
(S

U
U

′⊗
(1

)
1

γ
U

)
�� •

1
⊗

(1
)

1
M

� � � � � � � � � � � � � � �

�� � � � � � � � � � � �

U(
U

,U
′ )=

$$ " " " " " " " " " " " " " " " " " " " " " " " " " "

=

%%##########################
W

(T
U

,R
U

′ )

•
(β

U
′⊗

(1
)

1
S

U
U

′)
⊗

(1
)

1
1

�� •

M
⊗

(1
)

1
1

���������������

�������������

α
(1

)1

**

•

=

++ ( ( ( ( ( ( ( ( ( ( ( ( (

=

,,))))))))))))))))
W

(S
U

,R
U

′ )
⊗(1

)
1

W
(T

U
,S

U
)

M � � � � � � � � � � � � � � � � � � �

�� � � � � � � � � � � � � � � � � � � � �

U(
U

,U
′ )
⊗(1

)
1

I
1
⊗

(1
)

1
γ

U
� � �

�� � � � � � �

=

��****************

•
(R

U
U

′⊗
(1

)
1

β
U

)⊗
(1

)
1

1
�� •

M
⊗

(1
)

1
1

� � � � � � � � � � � � � � � �

�� � � � � � � � � � � � �

α
(1

)1

��

U(
U

,U
′ )
⊗(1

)
1

(I
⊗(1

)
1

I) R
U

U
′⊗

(1
)

1
(β

U
⊗

(1
)

1
γ

U
)

����������

������������

W
(R

U
,R

U
′ )
⊗(1

)
1

W
(T

U
,R

U
)

M

-- + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

W
(R

U
,R

U
′ )
⊗(1

)
1

(W
(S

U
,R

U
)
⊗(1

)
1

W
(T

U
,S

U
))

1
⊗

(1
)

1
M

� � � � � � � � � � � � � � � � � � � �

.. � � � � � � � � � � � � � � � � � � � �
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The arrows marked with an “=” all occur as copies of I are tensored to the
object at the arrow’s source. The 3 leftmost regions commute by the naturality
of α(1)1 = α2. The 2 embedded central hexagons commute by the definition of
V–2–natural transformations for γ and β. The three pentagons on the right are
copies of the pentagon axiom for the composition M. The associativity of this
composition also follows directly from the latter axiom.

The identities for this composition are V–2–natural transformations 1T :
T → T where (1T )U = JTU . That this describes a 2-sided identity for the
composition above is easily checked using the unit axioms for a V–2–category.

The composition of two V–modifications along a V–2–transformation is given
by the composition of the underlying V–natural transformations. So given V–
2–natural transformations α, β and σ : F → G : U → W , and V–modifications
µ : α → β and ν : β → σ as in the following picture

µ

!!
F

α

""

β
��

σ

##
ν
!!

G

where αU (0) = q, βU (0) = q̂ and σU (0) = q̌, we have

(ν ◦ µ)U = I = I ⊗1 I

νU⊗1µU

��
W(FU,GU)(q̂, q̌) ⊗1 W(FU,GU)(q, q̂)

M

��
W(FU,GU)(q, q̌)

We see that this composition is associative by the associativity pentagon for
M. We also see that the result of a composition is a V–natural transformation
as well. It needs to be checked that the result of a composition is a valid V–
modification. This is seen by showing that the exterior of the following diagram
commutes.

The first bullet in the following diagram is U(U,U ′)(f, g). Other objects
include:

A = (I ⊗1 I) ⊗2 U(U,U ′)(f, g) ; B = (I ⊗1 I) ⊗2 (U(U,U ′)(f, g) ⊗1 I) ;

C = (I⊗1I)⊗2(U(U,U ′)(f, g)⊗1U(U,U ′)(f, f)) ; D = (I⊗2U(U,U ′)(f, g))⊗1(I⊗2U(U,U ′)(f, f)) ;

E = U(U,U ′)(f, g) ⊗1 I ; H = U(U,U ′)(f, g) ⊗1 U(U,U ′)(f, f) ;

K = U(U,U ′)(f, g) ⊗2 (I ⊗1 I) ; L = (U(U,U ′)(f, g) ⊗1 I) ⊗2 (I ⊗1 I) ;

N = (U(U,U ′)(f, g) ⊗2 I) ⊗1 (U(U,U ′)(f, f) ⊗2 I) ;

P = (U(U,U ′)(f, g) ⊗2 U(U,U ′)(f, f)) ⊗1 (U(U,U ′)(f, f) ⊗2 I).
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•
=

��,,,,,,,,,,,,
M

⊗
2
1

�� •

M�������������������

//�������������������

•
(1

⊗
1
1
)⊗

2
(1

⊗
1
j F

U
U

′(
f
)
)

�� •
M

⊗
2
M

- - - - -

�� - - - - -

[a
]

[b
]

[d
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A

(ν
U
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1
µ

U
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2
F

U
U

′
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=
�� B
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1
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U
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⊗

2
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U
U
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1
1
)
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1
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2
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U
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F

U
U

′)
� � � � � � � � � � � �

		 � � � � � � � � � � � � �

[c
]

•

•η
1

,2
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1
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•
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•

=
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=
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E
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The arrows marked with an “=” all occur as copies of I are tensored to the
object at the arrow’s source. Therefore the quadrilateral regions [a],[e],[f],[h],[i]
and [j] all commute trivially. The uppermost and lowermost quadrilaterals com-
mute by the property of composing with units in an enriched category. The two
triangles commute by the external unit condition for iterated monoidal cate-
gories. Regions [b] and [k] commute by respect of units by enriched functors.
Regions [c] and [l] commute by naturality of η. Region [g] commutes by the
definition of V–modification for ν and µ. Regions [d] and [m] commute by the
V–functoriality of M. The following heuristic diagram for this proof is quite
instructive. (See the pattern set for these diagrams in the definition of a V–2–
category.)

1F f

!!
FU

Ff

22

Ff
��

Fg

33FU ′

q′

22q̂′
��

q̌′

33GU ′

=
1Gf

!!
FU

q

22q̂ ��

q̌

33GU

Gf

22

Gf
��

Gg

33GU ′

Thus identities 1α for this composition are families of V–natural equiva-
lences. Since αU is a V–functor from I to W(TU, SU) this means specifically
that ((1α)U )0 = jαU (0) = jq. Recall that here the “family” has only one member,
corresponding to the single object in I. That this describes a 2-sided identity for
the composition above is easily checked using the unit axioms for a V–category.

In order to define composition of all allowable pasting diagrams in the 2-
category, we need only to define the composition described by left and right
whiskering diagrams (as partial functors) and check that these can be combined
into a well–defined horizontal composition. The first picture shows a 1-cell
(that is a V–2–natural transformation between V–2–functors F,G : U → W)
following a 2-cell (a V–modification). These are composed to form a new 2-cell
as follows

µ
!!

F

ψ

��

β

�� G
γ �� H

is composed to become
γ∗µ
!!

F

γ∗ψ

��

γ∗β

�� H

where γ ∗ ψ and γ ∗ β are described above, and γ ∗ µ has components given by
the following composition: (Let ψU (0) = q, βU (0) = q̂ and γU (0) = q̌. Note that
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jq̌ = γU00 .)

(γ ∗ µ)U = I = I ⊗2 I

jq̌⊗2µU

��
W(GU,HU)(q̌, q̌) ⊗2 W(FU,GU)(q, q̂)

M
��

W(FU,HU)(q̌q, q̌q̂)

For this composition to yield a valid V–modification the exterior of the
following diagram must commute.
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The arrows marked with an “=” all occur as copies of I are tensored to the
object at the arrow’s source. The 3 leftmost regions commute by the naturality
of α2. The 2 embedded central “hexagons” commute by the definition of V–
modifications for µ and 1γ . The three pentagons on the right are copies of the
pentagon axiom for the composition M.

The second picture shows a 2–cell following a 1–cell. These are composed as
follows

µ
!!

E
ρ �� F

ψ

��

β

�� G
is composed to become

µ∗ρ
!!

E

ψ∗ρ

��

β∗ρ

�� G

where µ∗ρ has components given by the following composition: (Let ρU (0) =
q. Note that jq = ρU00 .)

(µ ∗ ρ)U = I = I ⊗2 I

µU⊗2jq

��
W(FU,GU)(q, q̂) ⊗2 W(EU,FU)(q, q)

M
��

W(FU,HU)(qq, q̂q)

For this composition to yield a valid V–modification the exterior of the fol-
lowing diagram must commute.
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The arrows marked with an “=” all occur as copies of I are tensored to the
object at the arrow’s source. The 3 leftmost regions commute by the naturality
of α2. The 2 embedded central “hexagons” commute by the definition of V–
modifications for µ and 1ρ. The three pentagons on the right are copies of the
pentagon axiom for the composition M.

What we have developed here are the partial functors of the composition
morphism implicit in enriching over Cat. The said composition morphism is a
functor of two variables. That the partial functors can be combined to make
the functor of two variables is implied by the commutativity of a diagram that
describes the two ways of combining them (see [Mac Lane, 1998]). One thing
that needs to be checked is that composing horizontally adjacent 2–cells is well–
defined. We also need to check that the partial functors are indeed functorial.
This is shown by checking that the whiskering distributes over the vertical com-
position, and checking that whiskering is the same as horizontally composing
with an identity 2–cell. (The latter is actually showing more than that whisker-
ing onto an identity 2–cell is the same as horizontally composing two identity
2–cells, which in turn is more than what we really need: i.e. whiskering onto an
identity 2–cell gives an identity 2–cell for the composed 1–cells. It is often how-
ever, just as convenient to prove.) I start with the first axiom of functoriality.

First we need to check that the whiskering distributes, i.e. that (ρ ∗ ν) ◦ (ρ ∗
µ) = ρ ∗ (ν ◦µ) and that (ν ∗ ξ) ◦ (µ ∗ ξ) = (ν ◦µ) ∗ ξ as in the following picture.

µ

!!
E

ξ �� F

α

""β ��

σ

##
ν
!!

G
ρ �� H

This requires the exteriors of the following two diagrams to commute (Let
ξU (0) = q, ρU (0) = q, αU (0) = q, βU (0) = q̂ and σU (0) = q̌,)
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M
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30



These commute since the interior regions all commute. The leftmost quadri-
laterals commute by naturality of η. The central triangular regions commute
by the unit axioms of V–categories. The pentagonal regions commute by the
V–functoriality of M.

This commutativity has verified that the partial functors of the horizon-
tal composition functor (whiskers) in fact do respect the composition in their
domain.

We still need the two ways of composing the below cells using whiskers to
be equivalent:

µ
!!

ν
!!

F

ψ

��

β

�� G

γ

��

σ

�� H

That is, we need:

ν ∗ µ = (σ ∗ µ) ◦ (ν ∗ ψ) = (ν ∗ β) ◦ (γ ∗ µ).

In terms of the above definitions, the exterior of the following diagram must
commute (Let ρU (0) = q.)
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⊗
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⊗
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⊗
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⊗
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This commutes since the interior regions all commute. The leftmost quadri-
laterals commute by naturality of η. The central triangular regions commute by
the unit axioms of V–categories. The upper and lower pentagonal regions com-
mute by the V–functoriality of M. This composition gives a valid V–modification
since the whiskered pieces are valid and since the composition along a V–2–
natural transformation gives a valid V–modification. The central leg of the above
diagram gives a more direct description of the composition of V–2–modifications
along a V–2–functor. From this description it is automatic that whiskering a V–
2–natural transformation to a V–modification along a V–2–functor is the same as
composing along that V–2–functor with an identity V–modification correspond-
ing to the whisker. We also see from this description that the associativity of
this composition follows immediately from the associativity axiom of a strict
V–2–category.

Now we can show the functoriality of the entire composition functor. (The
general proof regarding partial functors of a functor of two variables is in
[Mac Lane, 1998].) This states that, in the following picture, (ν2∗ν1)◦(µ2∗µ1) =
(ν2 ◦ µ2) ∗ (ν1 ◦ µ1).

µ1

!!
µ2

!!
F

""
��
##

ν1

!!

G
""
��
##

ν2

!!

H

This is shown by using what we have established. The following series of
pictures serve to illustrate the proof.

µ1

!!
µ2

!!
F

α

""ρ ��

σ

##
ν1

!!

G

γ

""β ��

ψ

##
ν2

!!

H

=

F
))

1α

��µ1 ��
1ρ

��

ν1

++G
))

µ2

//1β ��
ν2

		

1ψ

++H

=

F
))

1α

��1α ��
µ1

��

ν1

++G
))

µ2

//ν2 ��
1ψ

		

1ψ

++H

Or symbolically:
(ν2 ∗ ν1) ◦ (µ2 ∗ µ1)

= ((ψ ∗ ν1) ◦ (ν2 ∗ ρ)) ◦ ((β ∗ µ1) ◦ (µ2 ∗ α))

= (ψ ∗ ν1) ◦ ((ν2 ∗ ρ) ◦ (β ∗ µ1)) ◦ (µ2 ∗ α)

= (ψ ∗ ν1) ◦ ((ψ ∗ µ1) ◦ (ν2 ∗ α)) ◦ (µ2 ∗ α)

= ((ψ ∗ ν1) ◦ (ψ ∗ µ1)) ◦ ((ν2 ∗ α) ◦ (µ2 ∗ α))

= (ψ ∗ (ν1 ◦ µ1)) ◦ ((ν2 ◦ µ2) ∗ α)

= (ν2 ◦ µ2) ∗ (ν1 ◦ µ1)

The exchange identity is precisely the functoriality (respect of vertical com-
position) of the functor of two variables that describes the horizontal composi-
tion. We also have the respect of units by the horizontal composition simply
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by using the exchange identity above with units in the lower two 2–cells. Of
course the central leg version of the composition can be directly verified to be
functorial. The roundabout route is nice since it covers lots of pasting diagrams,
and is a good model for future such verifications.

The unit for composing V–modifications along a V–functor is the identity V–
modification 11T

where 1T : T → T is the identity V–2–natural transformation
for a V–2–functor T. Since (1T )U = JTU then (1T )U (0) = JTU (0) = 1TU . Thus
((11T

)U )
0

= j1T U
= JTU00 . That 11T

is a 2–sided unit for the composition is
seen by the unit axioms of strict V–2–category.
Proof (Part 2.)

In part 2 of the proof we describe how for each triple of V–2–categories we
have a 2–functor of two variables that serves to compose morphisms along a
common V–2–category as in the following picture.

α

A)

β

BA

γ

A)

ρ

BA
U

F

==

H

44µ
=� V

G

��

K

��ν
=� W

At each stage of description we also need to check that the composition along
a common V–2–category is associative and respects all units, as well as making
sure that for morphisms the composition is functorial. This latter property
always exhibits itself as an exchange identity.

Composition of V–2–functors is just composition of the object functions and
composition of the hom–category V–functors, with appropriate subscripts. Thus
(ST )UU ′(f) = STUTU ′(TUU ′(f)). Then it is straightforward to verify that the
axioms are obeyed, as in

(ST )U ′U ′′(f)(ST )UU ′(g)

= STU ′TU ′′(TU ′U ′′(f))STUTU ′(TUU ′(g))

= STUTU ′′(TU ′U ′′(f)TUU ′(g))

= STUTU ′′(TUU ′′(fg))

= (ST )UU ′′(fg).

That this composition is associative follows from the associativity of compo-
sition of the underlying functions and V–functors. The 2–sided identity for
this composition 1U is made of the identity function (on objects) and identity
V–functors (for hom–categories.)

Next we define the composition of V–2–natural transformations along a V–
2–category. This is accomplished by first describing the trivial cases–whiskering
a V–2–functor to a V–2–natural transformation along a V–2–category. (By
proceeding in terms of whiskers I get the opportunity to both discuss all the
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possible pasting in the 3–category and to exhibit the sub–2–categories implicit
in its structure.)

The first picture shows a 1-cell (V–2–functor) following a 2-cell (V–2–natural
transformation). These are composed to form a new 2-cell as follows

α
!!

U
F

��

H

�� V G �� W
is composed to become

Gα
!!

U
GF

��

GH

�� W

where Gα has components given by

(Gα)U = I
αU

��
V(FU,HU)

GF U,HU

��
W(GFU,GHU)

Notice that by definition and axioms of enrichment, letting αU (0) = q, we
have (Gα)U (0) = Gq and (Gα)U00 = jGq.

This whiskering gives a valid V–2–natural transformation by the following
commuting diagram.
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V(FU ′,HU ′) ⊗(1)
1 V(FU,FU ′)

M

CB

GF U′HU′⊗(1)
1 GF UF U′

�����
�

DC����
��

I ⊗(1)
1 U(U,U ′)

αU′⊗(1)
1 FUU′����

������

(Gα)U′⊗(1)
1 (GF )UU′

))
W(GFU ′, GHU ′) ⊗(1)

1 W(GFU,GFU ′)
M

���
����

����
����

�

U(U,U ′)

=
44>>>>>>>>>

=
==<

<<
<<

<<
<<

V(FU,HU ′)
GF UHU′ �� W(GFU,GHU ′)

U(U,U ′) ⊗(1)
1 I

HUU′⊗(1)
1 αU

���
�

�����
�

(GH)UU′⊗(1)
1 (Gα)U

++
W(GHU,GHU ′) ⊗(1)

1 W(GFU,GHU)

M

��

V(HU,HU ′) ⊗(1)
1 V(FU,HU)

M

ED

GHUHU′⊗(1)
1 GF UHU������

FE������

The central region expresses the V–2–naturality of α. The two rightmost
regions commute by the definition of V–2–functor.

The second picture shows a 2-cell following a 1-cell. These are composed as
follows

γ
!!

U H �� V
G

��

K

�� W
is composed to become

γH
!!

U
GH

��

KH

�� W

where γH has components given by (γH)U = γHU .
This whiskering gives a valid V–2–natural transformation by the following

commuting diagram.
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I ⊗(1)
1 V(HU,HU ′)

γHU′⊗(1)
1 GHUHU′

����
�

���
��

I ⊗(1)
1 U(U,U ′)

1⊗(1)
1 HUU′����

������

(γH)U′⊗(1)
1 (GH)UU′

))
W(GHU ′,KHU ′) ⊗(1)

1 W(GHU,GHU ′)
M

���
����

����
����

��

U(U,U ′)
HUU′ ��

=
��           

=
��!!

!!!
!!!

!!!
V(HU,HU ′)

=

>>

=
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W(GHU,KHU ′)

U(U,U ′) ⊗(1)
1 I

HUU′⊗(1)
1 1

���
�

�����
�

(KH)UU′⊗(1)
1 (γH)U

++
W(KHU,KHU ′) ⊗(1)

1 W(GHU,KHU)

M
��

V(HU,HU ′) ⊗(1)
1 I

KHUHU′⊗(1)
1 γHU

��

The central region expresses the V–2–naturality of γ.
To show the exchange identity here we proceed by checking the usual agree-

ment and functoriality of partials. First I will check that the partial functors
described by whiskering are indeed functorial. These proofs continue to parallel
the lower dimensional case. First we check that the right whiskering distributes,
i.e. that (Zα) ∗ (Zβ) = Z(α ∗ β) as in the following picture. (Recall that “∗”
denotes the composition along V–2–functors as in the first part of the proof.)

β
!!U

T

""S ��

R

##
α
!!

V Z �� W
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The two sides of the proposed equality form the legs of the following diagram,
which commutes due to the definition of the V–2–functoriality of Z:

I = I ⊗(1)
1 I

αU⊗(1)
1 βU

��
V(SU,RU) ⊗(1)

1 V(TU, SU)

M
��   

   
   

   Z⊗(1)
1 Z

���
����

����
����

��

V(TU,RU)

Z

��

















 W(ZSU,ZRU) ⊗(1)
1 V(ZTU,ZSU)

M��







W(ZTU,ZRU)

For the same requirement on the other partial functor we have the picture

γ

!!U T �� V
""
��
##

δ
!!

W

From the definitions is it immediate that ((δ ∗ γ)T )U = (δ ∗ γ)TU = (δT ∗ γT )U .
Now we can compose V–2–natural transformations along a V–2–category, as

in the following picture.

α
!!

γ
!!

U
F

��

H

�� V
G

��

K

�� W

As usual there are two ways to do so that need to be reconciled. They
both consist of defining the composition along the V–2–category in terms of
a composition along a common V–2–functor as in part 1 of the proof. Thus
since the whiskered pieces are valid V–2–natural transformations, by a previous
diagram their composition will be as well. The first way of composing is given
by:

γα = I = I ⊗(1)
1 I

(γH)U⊗(1)
1 (Gα)U

��
W(GHU,KHU) ⊗(1)

1 W(GFU,GHU)

M
��

W(GFU,KHU)
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The second is given by

γα = I = I ⊗(1)
1 I

(Kα)U⊗(1)
1 (γF )U

��
W(KFU,KHU) ⊗(1)

1 W(GFU,KFU)

M
��

W(GFU,KHU)

Letting (γF )U (0) = q̂ and (γH)U (0) = q̂′ and recalling that (Gα)U (0) = Gq we
have (γα)U (0) = q̂′Gq = Kqq̂ and by V–functoriality of M that (γα)U00 = jq̂′Gq.

That the two ways of composing are actually the same is based on the V–
2–naturality of γ, the definition of which makes up the central region of the
following commuting diagram. The other regions commute trivially.

I ⊗(1)
1 V(FU,HU)

γHU⊗(1)
1 GF UHU

����
�

���
��

W(GHU,KHU) ⊗(1)
1 W(GFU,GHU)

M

���
����

����
����

�

I ⊗(1)
1 I = ��

1⊗(1)
1 αU

��                              

αU⊗(1)
1 1

��!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!!!
!!!

!

(γH)U⊗(1)
1 (Gα)U

GF

(Kα)U⊗(1)
1 (γF )U

HG

I αU �� V(FU,HU)

=

##??????????????????

=

""@
@@

@@
@@

@@
@@

@@
@@

@@
@

W(GFU,KHU)

W(KFU,KHU) ⊗(1)
1 W(GFU,KFU)

M
������������������

V(FU,HU) ⊗(1)
1 I

KF UHU⊗(1)
1 γF U

��

Now whiskering a 1–cell Q on the right (or left) of a 2–cell α : T → S
should be the same as horizontally composing 1Q on the respective side of α.
Pictorially for the right-hand whiskering:

α
!!

U
T

��

S

�� V
Q �� W

=
α
!!

1Q
!!

U
T

��

S

�� V
Q

��

Q

�� W
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To see this equality we need check only one way of composing 1Qα since we
have shown it to be well defined – i.e. we check that Qα = 1Qα = Qα ∗ 1QT .
This is true immediately from the relationship of M and J . Now pictorially for
the left-hand whiskering:

α
!!

D P �� A
T

��

S

�� B
=

1P
!!

α
!!

D
P

��

P

�� A
T

��

S

�� B

That αP = α1P = S1P ∗ αP also is shown by using the relationship of M and
J and by the V–2–functoriality of S.

Associativity of this composition follows from the associativity of composing
V–2–natural transformations along a V–2–functor. It also requires the functo-
riality of the partial functors. In the following picture

α
!!

γ
!!

β
!!

U
F

��

H

�� V
G

��

K

�� W
P

��

Q

�� X

we have
β(γα) = Q(Kα ∗ γF ) ∗ βGF

= (QKα ∗ QγF ) ∗ βGF

= QKα ∗ (QγF ∗ βGF )

= QKα ∗ (Qγ ∗ βG)F = (βγ)α

where the assumed associativities of whiskers are easily verified.
The unit for composing V–2–natural transformations along a V–2–category

is the identity V–2–natural transformation 11U where 1U : U → U is the
identity V–2–functor. Note that (11U )U (0) = J1U U (0) = JU (0) = 1U and
that (11U )U

00
= JU00 = j1U

. Since the composition is based on that of V–
2–natural transformations along a V–2–functor, to see that 11U is a 2–sided
unit all we need to check is that for any α : T → S : U → W we have that
1Wα = α = α1U . This is clear from the definitions of whiskering above.

Next we consider compositions involving V–modifications along a V–2–category.
I start by defining whiskering of V–2–functors and then use that definition to
define whiskering of V–2–natural transformations. First the right whiskering of
a V–2–functor onto a V–modification as in the picture:

α

A)

β

BA
U

F

==

H

44µ
=� V

K
�� W

�→
Kα

A)

Kβ

BA
U

KF

��

KH

��Kµ
= � W
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where:
(Kµ)U = I

µU

��
V(FU,HU)(q, q̌)

KF U,HU

��
W(KFU,KHU)(Kq,Kq̌)

Where we let αU (0) = q and βU (0) = q̌. That this forms a valid V–modification
can be seen upon inspecting the following diagram. Its commutativity relies on
the fact that µ is a V–modification and on the V–2–functoriality of K.

W(KFU ′,KHU ′)(Kq′,Kq̌′) ⊗2 W(KFU,KFU ′)(KFf,KFg)

M

���
����

����
����

����
����

V(FU ′,HU ′)(q′, q̌′) ⊗2 V(FU,FU ′)(Ff, Fg)

M

���
����

����
����

����
����

�

K⊗2K

��
W(KFU,KHU ′)(Kq′KFf,Kq̌′KFg)

I ⊗2 U(U,U ′)(f, g)

µU′⊗2FUU′
fg

44>>>>>>>>>>>>>��

��
(Kµ)U′⊗2KF ��

V(FU,HU ′)(q′Ff, q̌′Fg)
K �� W(KFU,KHU ′)(Kq′Ff,Kq̌′Fg)

U(U,U ′)(f, g)

=

9988888888

=

::9
99
99
99
9

U(U,U ′)(f, g) ⊗2 I

HUU′
fg

⊗2µU

��<
<<

<<
<<

<<
<<

<<��

��
KH⊗2(Kµ)U

��

V(FU,HU ′)(Hfq,Hgq̌) K �� W(KFU,KHU ′)(KHfq,KHgq̌)

V(HU,HU ′)(Hf,Hg) ⊗2 V(FU,HU)(q, q̌)

M
��

K⊗2K

���
����

����
����

����
����

��
W(KFU,KHU ′)(KHfKq,KHgKq̌)

W(KHU,KHU ′)(KHf,KHg) ⊗2 W(KFU,KHU)(Kq,Kq̌)

M

��

Secondly the left whiskering of a V–2–functor onto a V–modification as in
the picture:

γ

A)

ρ

BA
U F �� V

G

��

K

��ν
=� W

�→
γF

A)

ρF

BA
U

GF

��

KF

��νF
= � W
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is given by (νF )U = νFU .
This one is a valid V–modification because of the following diagram, where

we use the fact that ν is a V–modification.

W(GFU ′,KFU ′)(q̂′, q′) ⊗2 W(GFU,GFU)(GFf,GFg)

M

��
I ⊗2 U(U,U ′)(f, g)

1⊗2FUU′
fg��

(νF )′U⊗2GF

..

I ⊗2 V(FU,FU ′)(Ff, Fg)

νF U′⊗2GF UF U′
F fF g���������

�����������

W(GFU,KFU ′)(q̂′GFf, q′GFg)

=

4422222222222222222

=

==A
AA

AA
AA

AA
AA

AA
AA

AAU(U,U ′)(f, g)—
FUU′

fg → V(FU,FU ′)(Ff, Fg)

=

����������������������

=

����
���

���
���

���
���

���

U(U,U ′)(f, g) ⊗2 I
FUU′

fg
⊗21

��

KF⊗2(νF )U

��

V(FU,FU ′)(Ff, Fg) ⊗2 I

KF UF U′
F fF g

⊗2νF U

����
����

�

�����
����

��

W(GFU,KFU)(KFfq̂,KFgq)

W(KFU,KFU ′)(KFf,KFg) ⊗2 W(GFU,KFU)(q̂, q)

M

**

The functoriality of these partials is shown just as for the whiskering of
V–2–functors onto V–2–natural transformations. Consider a V–modification
ξ : φ → ψ : T → F : U → V . For right whiskering we have that K(µ ∗ ξ) =
Kµ ∗Kξ by the V–2–functoriality of K. For a V–2–functor S : X → U we have
(µ ∗ ξ)S = µS ∗ ξS since ((µ ∗ ξ)S)X = (µ ∗ ξ)SX = (µS ∗ ξS)X .

In the next step we basically see the generalizations of these last two com-
positions. Next I define the right whiskering of a V–2–natural transformation
onto a V–modification as in the picture:

α

A)

β

BA

ρ

!!
U

F

==

H

44µ
=� V

G

��

K

��W
�→

ρα

A)

ρβ

BA
U

GF

��

KH

��ρµ
= � W

The V–modification ρµ : ρα → ρβ can be defined in two ways. Let αU (0) =
q, βU (0) = q̌, ρFU (0) = q, βU (0) = q̌′ and ρHU (0) = q′. The first way of
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composing is given by:

ρµU = I = I ⊗2 I

(Kµ)U⊗2(ρF )U00

��
W(KFU,KHU)(Kq,Kq̌) ⊗2 W(GFU,KFU)(q, q)

M
��

W(GFU,KHU)(Kqq,Kq̌q)

The second is given by

ρµU = I = I ⊗2 I

(ρH)U00⊗2(Gµ)U

��
W(GHU,KHU)(q′, q′) ⊗2 W(GFU,GHU)(Gq,Gq̌)

M
��

W(GFU,KHU)(q′Gq, q′Gq̌)

That the two ways agree is given by the following commuting diagram, which
depends on the fact that ρ is a V–2–natural transformation.

W(GHU,KHU)(q′, q′) ⊗2 W(GFU,GHU)(Gq,Gq̌)

M
��

I ⊗2 I
1⊗2µU

��

(ρH)U⊗2(Gµ)U

ED

I ⊗2 V(FU,HU)(q, q̌)

ρHU⊗2GF UHUqq̌

��

W(GFU,KHU)(q′Gq, q′Gq̌)
=

		............

=

//11
11

11
11

11
11I—µU → V(FU,HU)(q, q̌)

=

�����������������

=

�����
����

����
����

I ⊗2 I
µU⊗21 ��

(Kµ)U⊗2(ρF )U

CB

V(FU,HU)(q, q̌) ⊗2 I

KF UHUqq̌⊗2ρF U

����
��

���
���

W(GFU,KHU)(Kqq,Kq̌q)

W(KFU,KHU)(Kq,Kq̌) ⊗2 W(GFU,KFU)(q, q)

M
**

That this composition yields a V–modification is easily seen when we note
that it is by definition the same as composing certain V–modifications along
a common V–2–functor. For example the above composition is of the V–
modifications Kµ and 1ρF along the V–2–functor KF.
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Now we can define the left whiskering of a V–2–natural transformation onto
a V–modification as in the picture:

α

!!

γ

A)

ρ

BA
U

F

==

H

44 V

G

��

K

��ν
=� W

�→
γα

A)

ρα

BA
U

GF

��

KH

��να
= � W

The V–modification να : γα → ρα can be defined in two ways. Let αU (0) = q,
γFU (0) = q̂, ρFU (0) = q, γHU (0) = q̂′ and ρHU (0) = q′. The first way of
composing is given by:

ναU = I = I ⊗2 I

(νH)U⊗2(Gα)U00
��

W(GHU,KHU)(q̂′, q′) ⊗2 W(GFU,GHU)(Gq,Gq)

M
��

W(GFU,KHU)(q̂′Gq, q′Gq)

The second is given by

ναU = I = I ⊗2 I

(Kα)U00⊗2(νF )U

��
W(KFU,KHU)(Kq,Kq) ⊗2 W(GFU,KFU)(q̂, q)

M
��

W(GFU,KHU)(Kqq̂,Kqq)

That the two ways agree is given by the following commuting diagram, which
depends on the fact that ν is a V–modification.
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W(GHU,KHU)(q̂′, q′) ⊗2 W(GFU,GHU)(Gq,Gq)

M
��

I ⊗2 I
1⊗2αU00

��

(νH)U⊗2(Gα)U

..

I ⊗2 V(FU,HU)(q, q)

νHU⊗2GF UHUqq�������

���������

W(GFU,KHU)(q̂′Gq, q′Gq)

=

����������������

=

����
��

��
��

��
��

��I—αU00 → V(FU,HU)(q, q)

=

�������������������

=

�����
���

���
���

���
��

I ⊗2 I
αU00⊗21 ��

(Kα)U⊗2(νF )U

��

V(FU,HU)(q, q) ⊗2 I

KF UHUqq⊗2νF U

����
���

�����
����

W(GFU,KHU)(Kqq̂,Kqq)

W(KFU,KHU)(Kq,Kq) ⊗2 W(GFU,KFU)(q̂, q)

M

**

Again this composition yields a V–modification since it is by definition the
same as composing certain V–modifications along a common V–2–functor.

Necessary for the functoriality of the partials given by the above left and
right whiskering is that we have ρ(ω ◦ µ) = ρω ◦ ρµ and (tau ◦ ν)α = (τα ◦ να)
as in the following pictures:

α

A)

β

!!

δ

BA

ρ

!!
U

F

==

H

44µ
=�

ω
=� V

G

��

K

��W

and

α

!!

γ

A)

ρ

!!

σ

BA
U

F

==

H

44 V

G

��

K

��ν
= �

τ
= � W

These requirements are met since the exteriors of the following two diagrams
commute, respectively. Here let δU (0) = ˆ̂q and τU (0) = q.
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It is straightforward to check that if an identity V–2–natural transformation
for a given V–2–functor is whiskered onto the left or right of a V–modification the
definitions give exactly the respective whiskering of the V–2–functor itself. Thus
the following definition of the horizontal composition of V–modifications along a
V–2–category, given in terms of composing along a common V–2–natural trans-
formation could be written less generally but equivalently in terms of composing
along a common V–2–functor. Either way the result is a valid V–modification
based on an earlier proof. The equivalence will actually be a corollary of the
proof of the well defined nature of the composition. Now we are considering the
full picture:

α

A)

β

BA

γ

A)

ρ

BA
U

F

==

H

44µ
=� V

G

��

K

��ν
=� W

�→
γα

A)

ρβ

BA
U

GF

��

KH

��νµ
= � W

and the two ways of defining νµ in terms of composing along a common V–2–
natural transformation are as follow.

The first is:
(νµ)U = (ρµ ◦ να)U =

I = I ⊗1 I = (I ⊗2 I) ⊗1 (I ⊗2 I)

((Kµ)U⊗2(ρF )U00 )⊗1((Kα)U00⊗2(νF )U )

��
(W(KFU,KHU)(Kq,Kq̌) ⊗2 W(GFU,KFU)(q, q) ⊗1 (W(KFU,KHU)(Kq,Kq) ⊗2 W(GFU,KFU)(q̂, q))

M⊗1M
��

W(GFU,KHU)(Kqq,Kq̌q) ⊗1 W(GFU,KHU)(Kqq̂,Kqq)

M

��
W(GFU,KHU)(Kqq̂,Kq̌q)

and the second:
(νµ)U = (νβ ◦ γµ)U =
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I = I ⊗1 I = (I ⊗2 I) ⊗1 (I ⊗2 I)

((νH)U⊗2(Gβ)U00 )⊗1((γH)U00⊗2(Gµ)U )

��
(W(GHU,KHU)(q̂′, q′) ⊗2 W(GFU,GHU)(Gq̌,Gq̌)) ⊗1 (W(GHU,KHU)(q̂′, q̂′) ⊗2 W(GFU,GHU)(Gq,Gq̌))

M⊗1M
��

W(GFU,KHU)(q̂′Gq̌, q′Gq̌) ⊗1 W(GFU,KHU)(q̂′Gq, q̂′Gq̌)

M

��
W(GFU,KHU)(q̂′Gq, q′Gq̌)

Note that in both of the preceding two definitions we have made two choices
between equivalent ways of representing component V–modifications. The pre-
ceding two definitions are equivalent based on the following commutative dia-
gram.
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(W(GHU,KHU)(q̂′, q′) ⊗2 W(GFU,GHU)(Gq̌,Gq̌)) ⊗1 (W(GHU,KHU)(q̂′, q̂′) ⊗2 W(GFU,GHU)(Gq,Gq̌))

•

M⊗1M

))'
''

''
''

''
''

''
''

''
''

''
''

''
''

''
''

'

η

KKDD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
DD
D

(I ⊗2 I) ⊗1 (I ⊗2 I)

((νH)U⊗2(Gβ)U00 )⊗1((γH)U00⊗2(Gµ)U )77777777777

..7777777777777777777

η

GFE
EE
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EE
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EE

EE

•

M⊗2M

���
��

��
��

��
��

��
��

��
��

��
��

��

(I ⊗1 I) ⊗2 (I ⊗1 I)

		------

•

M

��F
FF
FF
FF
FF
FF
FF
FF
FF
FF
F

I ⊗1 I

=

665555555555555555555555555555
W(GHU,KHU)(q̂′, q′) ⊗2 W(GFU,GHU)(Gq,Gq̌)

M

�����
����

����
����

����
����

�����
����

����
����

����
����

�����
����

����
����

����
����

I ⊗2 I

=

442222222222222222222222222222
(νH)U⊗2(Gµ)U

LLLL LL

1⊗2µU

������
��

������

I ⊗2 V(FU,HU)(q, q̌)

νHU⊗2GF UHU����������

������������

W(GFU,KHU)(q̂′Gq, q′Gq̌)

I

=

99GGGGGGGGGGGGGGGGGG

=

$$HHHHHHHHHHHHHH

$$HHHHHHHHHHHHHH

$$HHHHHHHHHHHHHH µU ��

=

::I
II
II
II
II
II
II
II
II
I

=

%%J
JJ
JJ
JJ
JJ
JJ
JJ

%%J
JJ
JJ
JJ
JJ
JJ
JJ

%%J
JJ
JJ
JJ
JJ
JJ
JJ

V(FU,HU)(q, q̌)

=

���������������

=

����
���

���
���

��

V(FU,HU)(q, q̌) ⊗2 I

KF UHU⊗2νF U

����
����

��

�����
����

���

W(GFU,KHU)(Kqq̂,Kq̌q)

I ⊗2 I

=

==A
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA
AA

A

(Kµ)U⊗2(νF )U MM MMMM

µU⊗21��������

..����

I ⊗1 I

=

<<K
KK
KK
KK
KK
KK
KK
KK
KK
KK
KK
KK
KK
KK

W(KFU,KHU)(Kq,Kq̌) ⊗2 W(GFU,KFU)(q̂, q)

M

��������������������������

��������������������������

��������������������������

•

M

NNLLLLLLLLLLLLLLLLLLLL

(I ⊗1 I) ⊗2 (I ⊗1 I)

//,,
,,,

,

•

M⊗2M

OOMMMMMMMMMMMMMMMMMMMMMMMMM

(I ⊗2 I) ⊗1 (I ⊗2 I)

((Kµ)U⊗2(ρF )U00 )⊗1((Kα)U00⊗2(νF )U )
444444

44444

��444444
444444

444444
4

η

HGNNNNNNNNNNNNNNNNN

•

M⊗1M

++((((((((((((((((((((((((((((((((

η

PPOOOOOOOOOOOOOOOOOOOOOOOOO

(W(KFU,KHU)(Kq,Kq̌) ⊗2 W(GFU,KFU)(q, q) ⊗1 (W(KFU,KHU)(Kq,Kq) ⊗2 W(GFU,KFU)(q̂, q))
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The exterior commutes since all the interior regions commute. The top and
bottom bullets are labeled by the text at the top and bottom of the diagram.
The other bullets and unlabeled arrows should be easily filled in, noting that
the uppermost and lowest quadrilaterals commute by the naturality of η. The
arrows marked with an “=” all occur as copies of I are tensored to the object
at the arrow’s source. Therefore the western regions with the initial I as a
vertex all commute trivially. The large central region expresses the fact that ν
is a V–modification. The pentagonal regions on the right commute by the V–
functoriality of M. The remaining interior regions commute by definition and
by the axioms of a V–category.

The thick arrows in the central portion of the above diagram outline the
definition of composing V–modifications along a V–2–category in terms of com-
posing along a common V–2–functor. Thus this diagram also demonstrates that
the two ways of doing so are equivalent to each other and to the method which
uses composition along a common V–2–natural transformation.

Next we continue checking functoriality of partials. As usual I check the
stronger property that the composition defined by those partials gives the whisker-
ing itself as a composition with a unit. First we check that composing in the
following two pictures yields the same V–modification.

α

A)

β

BA

ρ

!!
U

F

==

H

44µ
=� V

G

��

K

��W

=

α

A)

β

BA

ρ

A)

ρ

BA
U

F

==

H

44µ
= � V

G

��

K

��1ρ

=� W

Using the definition of the composition of V–modifications in terms of com-
posing along a common V–2–functor it is easy to see that this equality follows
from the fact that (ρF )U00 = (ρ)FU00 = j(ρF U (0)) = (1ρ)FU = (1ρF )U .

As noted earlier the compositions in the first two of the following pic-
tures yield the same V–modifications as well, due to the fact that (1GF )U00 =
(1G)FU00 = JGFU00 . Thus by the above equality all three are equivalent:

α

A)

β

BA
U

F

==

H

44µ
=� V

G
�� W

=

α

A)

β

BA

1G

!!
U

F

==

H

44µ
=� V

G

��

G

��W
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=

α

A)

β

BA

1G

A)

1G

BA
U

F

==

H

44µ
=� V

G

��

G

��11G

= � W

On the other side we need to check that the following compositions are equiva-
lent:

α

!!

γ

A)

ρ

BA
U

F

==

H

44 V

G

��

K

��ν
=� W

=

α

A)

α

BA

γ

A)

ρ

BA
U

F

==

H

441α

= � V

G

��

K

��ν
=� W

This follows from the definition of V–2–functor (relation to unit axiom) since
(Gα)U00 = jG(αU (0)) = (G1α)U . Furthermore, since (G1F )U00 = JGFU00 , we
have the equality:

γ

A)

ρ

BA
U F �� V

G

��

K

��ν
= � W

=

1F

!!

γ

A)

ρ

BA
U

F

==

F

44 V

G

��

K

��ν
= � W

=

1F

A)

1F

BA

γ

A)

ρ

BA
U

F

==

F

4411F

=� V

G

��

K

��ν
= � W

Associativity of this composition follows from the associativity of composing
V–modifications along a V–2–functor. It also requires the functoriality of the
partial functors that describe whiskering V–2–functors onto V–modifications. In
the following picture
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α

A)

β

BA

γ

A)

ρ

BA

φ

A)

ψ

BA
U

F

==

H

44µ
=� V

G

��

K

��ν
=� W

P

��

Q

��ξ
=� X

we have
ξ(νµ) = Q(Kµ ∗ νF ) ∗ ξGF

= (QKµ ∗ QνF ) ∗ ξGF

= QKµ ∗ (QνF ∗ ξGF )

= QKµ ∗ (Qν ∗ ξG)F = (ξν)µ

where the assumed associativities of whiskers are easily verified.
Finally the unit for this composition is given by the V–modification 111U as

in the following picture:

11U
A)

11U
BA

U

1U

GF

1U

HG111U
=� U

It is straightforward to check that this is a 2–sided unit for the composition of V–
modifications along a common V–2–category once we recognize that (111U )U :

I → U(U,U)(1U , 1U ) is the morphism j1U
in V.

I close with the basic pasting diagram that the above proof has shown to be
well-defined. There are 4 exchange identities that this well–definedness depends
upon, the requirements for each of which have been met.
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Thus we have:

(α4α2) ∗ (α3α1) = (α4 ∗ α3)(α2 ∗ α1)

(ν2 ◦ µ2) ∗ (ν1 ◦ µ1) = (ν2 ∗ ν1) ◦ (µ2 ∗ µ1)

(ν3ν1) ◦ (µ3µ1) = (ν3 ◦ µ3)(ν1 ◦ µ1)

(µ4µ2) ∗ (µ3µ1) = (µ4 ∗ µ3)(µ2 ∗ µ1).
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