
ENRICHED 2-NATURAL TRANSFORMATIONS, MODIFICATIONS,
AND HIGHER MORPHISMS

STEFAN FORCEY

Abstract. We review enriched 2-natural transformations, modifications, and higher
morphisms in the context of a symmetric monoidal n-category V. The goal is to discern
what sort of algebraic structure these actually comprise.
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1. Introduction

Here we go over the definitions of strict morphisms for strict enriched n-categories. This
includes higher enriched natural transformations and modifications. This is a symmetric
category based version of the same information found in [Forcey2, 2004]. Thus the proofs
there are more general than the omitted proofs here.

2. Categories Enriched over V–Cat

Recall that the unit V–category I has only one object 0 and I(0, 0) = I the unit in V .

2.1. Example. A (small,strict) V–2–category U consists of

(1) A set of objects |U |
(2) For each pair of objects A,B ∈ |U | a V–category U(A,B).

Of course then U(A,B) consists of a set of objects (which play the role of the 1–
cells in a 2–category) and for each pair f, g ∈ |U(A,B)| an object U(A,B)(f, g) ∈
V (which plays the role of the hom–set of 2–cells in a 2–category.) Thus the
vertical composition morphisms of these hom2–objects are in V :

Mfgh : U(A,B)(g, h)⊗ U(A,B)(f, g) → U(A,B)(f, h)

Also, the vertical identity for a 1-cell object a ∈ |U(A,B)| is ja : I →
U(A,B)(a, a). The associativity and the units of vertical composition are then
those given by the respective axioms of enriched categories.

Key words and phrases. enriched categories, n-categories, iterated monoidal categories.
Thanks to XY-pic for the diagrams.
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(3) For each triple of objects A,B,C ∈ |U | a V–functor

MABC : U(B,C)⊗ U(A,B) → U(A,C)

Often we repress the subscripts. We denote M(h, f) as hf .
The family of morphisms indexed by pairs of objects (g, f), (g′, f ′) ∈ |U(B,C)⊗ U(A,B)|

furnishes the direct analogue of horizontal composition of 2-cells as can be seen
by observing their domain and range in V :

MABC(g,f)(g′,f ′)
: [U(B,C)⊗ U(A,B)]((g, f), (g′, f ′)) → U(A,C)(gf, g′f ′)

Recall that

[U(B,C)⊗ U(A,B)]((g, f), (g′, f ′)) = U(B,C)(g, g′)⊗ U(A,B)(f, f ′).

We can now form the partial functors M(h,−) : U(A,B) → U(A,C) given by

U(A,B) = I ⊗ U(A,B)

h⊗1
��

U(B,C)⊗ U(A,B)

M
��

U(A,C)

.

Where h is here seen as the constant functor.
Then M(h,−)ff ′ is given by

U(A,B)(f, f ′) = I ⊗ U(A,B)(f, f ′)

jh⊗1

��
U(B,C)(h, h)⊗ U(A,B)(f, f ′)

M(h,f)(h,f ′)
��

U(A,C)(hf, hf ′)

.

This is the analogue of whiskering on the right. We can heuristically represent the
objects of U(A,B) as arrows in a diagram. The diagram for M(h,−)ff ′ should
be

A

f

''

f ′

77 B
h // C
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The other partial functors are M(−, f) : U(B,C) → U(A,C) given by

U(B,C) = U(B,C)⊗ I

1⊗f
��

U(B,C)⊗ U(A,B)

M
��

U(A,C)

.

Then M(−, f)hh′ is given by

U(B,C)(h, h′) = U(B,C)(h, h′)⊗ I

1⊗jf
��

U(B,C)(h, h′)⊗ U(A,B)(f, f)

M(h,f)(h′,f)
��

U(A,C)(hf, h′f)

.

This is the analogue of whiskering on the left, as in

A
f // B

h

''

h′

77 C

Notice that given any pair of partial functors, they can be combined to give a
unique full functor since V is symmetric.

(4) For each object A ∈ |U | a V–functor

JA : I → U(A,A)

We denote JA(0) as 1A.
(5) (Associativity and unit axioms of a strict V–2–category.) For comparison see

[Kelly, 1982] for the analogous axioms in the definition of enriched category. Since
now the morphisms are V–functors this amounts to saying that the functors given
by the two legs of a diagram are equal. For objects here we then have the equalities
(fg)h = f(gh) and f1A = f = 1Bf

For the hom–object morphisms we have the following family of commuting
diagrams for associativity, where the first bullet represents

[(U(C,D)⊗ U(B,C))⊗ U(A,B)](((f, g), h), ((f ′, g′), h′))
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and the reader may fill in the others

• α //

MBCD(f,g)(f ′,g′)
⊗1

��







•

1⊗MABC(g,h)(g′,h′)

��1
11

11
11

11
11

11

•

MABD(fg,h)(f ′g′,h′)

  B
BB

BB
BB

BB
BB

BB
BB

BB
•

MACD(f,gh)(f ′,g′h′)

~~||
||

||
||

||
||

||
||

|

•
The heuristic diagram for this commutativity is

A

h

''

h′

77 B

g

''

g′

77 C

f

''

f ′

77 D

Some special cases in this family of commuting diagrams mentioned in [Lyubashenko, 2003]
are those described by the following heuristic diagrams.

A
h // B

g

''

g′

77 C
f // D

A

h

''

h′

77 B
g // C

f // D

A
h // B

g // C

f

''

f ′

77 D

For the unit morphisms we have that the triangles in the following diagram
commute.

[I ⊗ U(A,B)]((0, f), (0, g))
=

**UUUUUUUUUUUUUUUU

JB00
⊗1

��

[U(A,B)⊗ I]((f, 0), (g, 0))

1⊗JA00

��

=
ttiiiiiiiiiiiiiiii

U(A,B)(f, g)

[U(B,B)⊗ U(A,B)]((1B, f), (1B, g))

MABB(1B,f)(1B,g)iiiii

44iiiii

[U(A,B)⊗ U(A,A)]((f, 1A), (g, 1A))

MAAB(f,1A)(g,1A)UUUUU

jjUUUUU

The heuristic diagrams for this commutativity are
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11A
��

A

1A

&&

1A

88 A

f

''

g

77 B

=

A

f

''

g

77 B

=

11B
��

A

f

''

g

77 B

1B

''

1B

77 B

2.2. Theorem. V–functoriality of M and J : First the V–functoriality of M implies
that the following (expanded) diagram commutes

(U(B,C)(k,m)⊗ U(B,C)(h, k))⊗ (U(A,B)(g, l)⊗ U(A,B)(f, g))

Mhkm⊗Mfgl

$$J
JJJJJJJJJJJJJJJJJJJ

(U(B,C)(k,m)⊗ U(A,B)(g, l))⊗ (U(B,C)(h, k)⊗ U(A,B)(f, g))

MABC(k,g)(m,l)
⊗MABC(h,f)(k,g)

��

c

55kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
U(B,C)(h,m)⊗ U(A,B)(f, l)

MABC(h,f)(m,l)

��
U(A,C)(kg,ml)⊗ U(A,C)(hf, kg)

M(hf)(kg)(ml) // U(A,C)(hf,ml)

The heuristic diagram is

A

f

��g //

l

AAB

h

��
k //

m

AAC

V–functoriality of M implies V–functoriality of the partial functors M(h,−). Special
cases mentioned in [Lyubashenko, 2003] include those described by the diagrams

A

f

��g //

l

AAB
k // C

and

A
g // B

h

��
k //

m

@@C.

Secondly the V–functoriality of M implies that the following (expanded) diagram com-
mutes

U(B,C)(g, g)⊗ U(A,B)(f, f)

MABC(g,f)(g,f)

��

I

jg⊗jf
44hhhhhhhhhhhhhhhhhhhhhh

jgf **VVVVVVVVVVVVVVVVVVVVVV

U(A,C)(gf, gf)
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The heuristic diagram here is

1f
��

1g
��

A

f

''

f

77 B

g

''

g

77 C

=
1gf
��

A

gf

''

gf

77 C

In addition, the V–functoriality of J implies that the following (expanded) diagram com-
mutes

I(0, 0)

JA00

��

I

j0
55kkkkkkkkkkkkkkkkk

j1A ))SSSSSSSSSSSSSSSS

U(A,A)(1A, 1A)

Which means that

JA00 : I → U(A,A)(1A, 1A) = j1A .

In other words the “horizontal” unit for the object 1A is the same as the “vertical” unit
for 1A.

We now describe the (strict) 3–category V–2–Cat (or V–Cat–Cat) whose objects are
(strict, small) V–2–categories. We are guided by the definitions of V–functor and V–
natural transformation as well as by the definitions of 2–functor, 2–natural transforma-
tion, and modification.

2.3. Definition. For two V–2–categories U and W a V–2–functor T : U → W is a func-
tion on objects |U | → |W | and a family of V–functors TUU ′ : U(U,U ′) → W(TU, TU ′).
These latter obey commutativity of the usual diagrams.

(1) For U,U ′, U ′′ ∈ |U |

•
MUU′U′′ //

TU′U′′⊗TUU′

��

•

TUU′′

��
•

M(TU)(TU′)(TU′′)

// •

(2)

•

TUU

��

I

JU
88qqqqqqqqqqqqq

JTU &&MMMMMMMMMMMMM

•
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For objects this means that TU ′U ′′(f)TUU ′(g) = TUU ′′(fg) and TUU(1U) = 1TU . The
reader should unpack both diagrams into terms of hom–object morphisms and V–functoriality.
Composition of V–2–functors is just composition of functions and components.

2.4. Definition. A V–2–natural transformation α : T → S : U → W is a function
sending each U ∈ |U | to a V–functor αU : I → W(TU, SU) in such a way that we have
commutativity of

I ⊗ U(U,U ′)
αU′⊗TUU′ // W(TU ′, SU ′)⊗W(TU, TU ′)

M

**UUUUUUUUUUUUUUUUU

U(U,U ′)

=
77ooooooooooo

=
''OOOOOOOOOOO

W(TU, SU ′)

U(U,U ′)⊗ I
SUU′⊗αU

// W(SU, SU ′)⊗W(TU, SU)

M
44iiiiiiiiiiiiiiiii

Unpacking this a bit, we see that αU is an object q = αU(0) in the V–category
W(TU, SU) and a morphism αU00 : I → W(TU, SU)(q, q). By the V–functoriality of
αU we see that αU00 = jq. The axiom then states that q′TUU ′(f) = SUU ′(f)q for all f ,
and that

M(TU)(TU ′)(SU ′)(q′,TUU′ (f))(q
′,TUU′ (g))

◦(jq′⊗TUU ′fg) = M(TU)(SU)(SU ′)(SUU′ (f),q)(SUU′ (g),q)
◦(SUU ′fg⊗jq)

This is directly analogous to the usual definition of 2–natural transformation by whisker
diagrams.

Vertical composition of V–2–natural transformations is as expected. (β ◦ α)U =

I ⊗ I
βU⊗αU
��

W(SU,RU)⊗W(TU, SU)

M
��

W(TU,RU)

Identity 2–cells for vertical composition are V–2–natural transformations 1T : T → T
where (1T )U = JTU . Left and right whiskering of V–2–functors onto V–2–natural trans-
formations are given by precisely the same descriptions as in the low dimensional case,
with I replaced by I, etc.

2.5. Definition. Given two V–2–natural transformations a V–modification between them
µ : θ → φ : T → S : U → W is a function that sends each object U ∈ |U | to a morphism
µU : I → W(TU, SU)(θU(0), φU(0)) in such a way that the following diagram commutes.

(Let θU(0) = q, φU(0) = q̂, θU ′(0) = q′ and φU ′(0) = q̂′.)
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W(TU ′, SU ′)(q′, q̂′)⊗W(TU, TU ′)(TUU ′(f), TUU ′(g))
M

,,XXXXXXXXXXXXXXXXXXXX

I ⊗ U(U,U ′)(f, g)
µU′⊗TUU′

fg

33ggggggggggggggggg

W(TU, SU ′)(q′TUU ′(f), q̂′TUU ′(g))

U(U,U ′)(f, g)

=
;;wwwwwwww

= ##H
HHHHHH

U(U,U ′)(f, g)⊗ I
SUU′

fg
⊗µU

++WWWWWWWWWWWWWWWWW
W(TU, SU ′)(SUU ′(f)q, SUU ′(g)q̂)

W(SU, SU ′)(SUU ′(f), SUU ′(g))⊗W(TU, SU)(q, q̂)

M
22eeeeeeeeeeeeeeeeeeeee

This is directly analogous to the usual definition of modification described in section
1. Notice that since θU00 = jθU (0) for all V–2–natural transformations θ we have that
the morphism µU seen as a “family” consisting of a single morphism (corresponding to
0 ∈ |I|) constitutes a V–natural transformation from θU to φU . “Vertical” compositions
of modifications are given by the compositions of these underlying V–natural transfor-
mations as described in section 1. Thus identities 1α for this composition are families
of V–natural equivalences. Since αU is a V–functor from I to W(TU, SU) this means
specifically that ((1α)U)0 = jαU (0) = jq.

2.6. Theorem. V–2–categories, V–2–functors, V–2–natural transformations and V–modifications
form a 3–category called V–2–Cat.

For proofs see either [Forcey2, 2004] or my thesis at
http://scholar.lib.vt.edu/theses/available/etd-04232004-160123/.
For V k–fold monoidal we have demonstrated that V–Cat is (k − 1)–fold monoidal.

By induction we have that this process continues, i.e. that V–n–Cat = V–(n− 1)–Cat–
Cat is (k − n)–fold monoidal for k > n. For example, let us expand our description
of the next level: the fact that V–2–Cat = V–Cat–Cat is (k − 2)–fold monoidal. Now
we are considering enrichment over V–Cat. All the constructions in the proof above
are recursively repeated. The unit V–2–category is denoted as I where |I| = {0} and
I(0,0) = I. Products of V–2–categories are given by U ⊗W for i = 1...k − 2. Objects
are pairs of objects as usual, and that there are exactly k − 2 products is seen when the
definition of hom–objects is given. In V–2–Cat,

[U ⊗(2)
i W ]((U,W ), (U ′,W ′)) = U(U,U ′)⊗W(W,W ′)

Thus we have that

[U ⊗W ]((U,W ), (U ′,W ′))((f, f ′), (g, g′))

= [U(U,U ′)⊗W(W,W ′)]((f, f ′), (g, g′))

= U(U,U ′)(f, g)⊗W(W,W ′)(f ′, g′)

The definitions of α(2) is just as in the lower case. For instance, α(2) will now be a
3–natural transformation, that is, a family of V–2–functors

α
(2)

UVW : (U ⊗ V)⊗W → U ⊗ (V ⊗W).
8
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To each of these is associated a family of V–functors

α
(2)

UVW (U,V,W )(U′,V ′,W ′)
= α

(1)

U (U,U ′)V (V,V ′)W (W,W ′)

to each of which is associated a family of hom–object morphisms

α
(2)

UVW (U,V,W )(U′,V ′,W ′)(f,g,h)(f ′,g′,h′)

= αU (U,U ′)(f,f ′)V (V,V ′)(g,g′)W (W,W ′)(h,h′)
.

Now for the definitions of V–n–categories and of the morphisms of V–n–Cat.

3. Category of V–n–Categories

The definition of a category enriched over V–(n−1)–Cat is simply stated by describing
the process as enriching over V–(n− 1)–Cat. In detail this means that:

3.1. Definition. A (small, strict) V–n–category U consists of

(1) A set of objects |U |
(2) For each pair of objects A,B ∈ |U | a V–(n− 1)–category U(A,B).
(3) For each triple of objects A,B,C ∈ |U | a V–(n− 1)–functor

MABC : U(B,C)⊗ U(A,B) → U(A,C)

(4) For each object A ∈ |U | a V–(n− 1)–functor

J A : I(n−1) → U(A,A)

Henceforth we let the dimensions of domain for and particular instances of M
and J largely be determined by context.

(5) Axioms: The V–(n − 1)–functors that play the role of composition and identity
obey commutativity of a pentagonal diagram (associativity axiom) and of two
triangular diagrams (unit axioms). This amounts to saying that the functors
given by the two legs of each diagram are equal.

• α(n)
//

MBCD⊗1

����
��
��
�

•
1⊗MABC

��2
22

22
22

•

MABD !!D
DD

DD
DD

DD
•

MACD}}zz
zz

zz
zz

z

•

I(n) ⊗ U(A,B)
=

$$I
IIIIIIII

J B⊗1

��

U(A,B)⊗ I(n)

1⊗J A

��

=
zzuuuuuuuuu

U(A,B)

•
MABBsssss

99sss

•
MAABKKKKK

eeKKK

The consequences of these axioms are expanded commuting diagrams just as in
Example 2.1.
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This definition requires that there be definitions of the unit I(n) and of V–n–functors in
place. First, from the proof of monoidal structure on V–n–Cat, we can infer a recursively
defined unit V–n–category.

3.2. Definition. The unit object in V–n–Cat is the V–n–category I(n) with one object
0 and with I(n)(0,0) = I(n−1), where I(n−1) is the unit object in V–(n − 1)–Cat. Of

course we let I(0) be I in V . Also M000 = J 0 = 1I (n) .

Now we can define the functors:

3.3. Definition. For two V–n–categories U and W a V–n–functor T : U → W is a
function on objects |U | → |W | and a family of V–(n − 1)–functors TUU ′ : U(U,U ′) →
W(TU, TU ′). These latter obey commutativity of the usual diagrams.

(1) For U,U ′, U ′′ ∈ |U |

•
MUU′U′′ //

TU′U′′⊗TUU′
��

•
TUU′′

��
•

M(TU)(TU′)(TU′′)

// •

(2)
•

TUU

��

I(n−1)

J U

77ooooooooooooo

J TU ''PPPPPPPPPPPPP

•
Here a V–0–functor is just a morphism in V .

V–n–categories and V–n–functors form a category. Composition of V–n–functors is
just composition of the object functions and composition of the hom–category V–(n−1)–
functors, with appropriate subscripts. Thus (ST )UU ′(f) = STUTU ′(TUU ′(f)). Then it is
straightforward to verify that the axioms are obeyed, as in

(ST )U ′U ′′(f)(ST )UU ′(g)

= STU ′TU ′′(TU ′U ′′(f))STUTU ′(TUU ′(g))

= STUTU ′′(TU ′U ′′(f)TUU ′(g))

= STUTU ′′(TUU ′′(fg))

= (ST )UU ′′(fg).

That this composition is associative follows from the associativity of composition of the
underlying functions and V–(n− 1)–functors. The 2–sided identity for this composition
1U is made of the identity function (on objects) and identity V–(n − 1)–functor (for
hom–categories.) The 1–cells we have just defined play a special role in the definition of
a general k–cell for k ≥ 2. These higher morphisms will be shown to exist and described
in some detail in section 5.
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4. Categorical Structure of V–n–Cat

Now we demonstrate that V–n–Cat has a special (n+ 1)–category structure that is a
restriction of the morphisms occurring between images of the induced forgetful functors.
This structure is the natural extension of the 2–category structure described for V–Cat in
[Kelly, 1982], and therefore when we speak of V–n–Cat hereafter it will be the following
structure to which we refer.

4.1. Definition. A V–n:k–cell α between (k − 1)–cells ψk−1 and φk−1, written

α : ψk−1 → φk−1 : ψk−2 → φk−2 : ... : ψ2 → φ2 : F → G : U → W

where F and G are V–n–functors and where the superscripts denote cell dimension, is a
function sending each U ∈ |U | to a V–((n− k) + 1)–functor

αU : I((n−k)+1) → W(FU,GU)(ψ2
U0, φ2

U0)...(ψk−1
U 0, φk−1

U 0)

in such a way that we have commutativity of the following diagram. Note that the final
(curved) equal sign is implied recursively by the diagram for the (k − 1)–cells.

W(FU ′, GU ′)(ψ2
U ′0, φ2

U ′0)...(ψk−1
U ′ 0, φk−1

U ′ 0)
⊗W(FU,FU ′)(F (x2), F (y2))...(F (xk−1), F (yk−1))

M
**UUUUUUUUUUUUUUUUUU

I((n−k)+1) ⊗ U(U,U ′)(x2, y2)...(xk−1, yk−1)

αU′⊗F

66nnnnnnnnnnnnn
W(FU,GU ′)(ψ2

U ′0F (x2), φ2
U ′0F (y2))...(ψk−1

U ′ 0F (xk−1), φk−1
U ′ 0F (yk−1))

U(U,U ′)(x2, y2)...(xk−1, yk−1)

=

;;vvvvvvvvvv

=
$$H

HH
HH

HH
HH

H

U(U,U ′)(x2, y2)...(xk−1, yk−1)⊗ I((n−k)+1)

G⊗αU

((PPPPPPPPPPPPP
W(FU,GU ′)(G(x2)ψ2

U0, G(y2)φ2
U0)...(G(xk−1)ψk−1

U 0, G(yk−1)φk−1
U 0)

W(GU,GU ′)(G(x2), G(y2))...(G(xk−1), G(yk−1))
⊗W(FU,GU)(ψ2

U0, φ2
U0)...(ψk−1

U 0, φk−1
U 0)

M

44iiiiiiiiiiiiiiiiii

Thus for a given value of n there are k–cells up to k = n + 1, making V–n–Cat a
potential (n + 1)–category. We have already described composition of V–n–functors.
Now we describe all other compositions.

4.2. Definition. Case 1.
Let k = 2 . . . n + 1 and i = 1 . . . k − 1. Given α and β two V–n:k–cells that share a

common V–n:(k-i)–cell γ, we can compose along the latter morphism as follows
11



(β ◦ α)U = I((n−k)+1) = I((n−k)+1) ⊗ I((n−k)+1)

βU⊗αU
��

W(FU,GU)(ψ2
U0, φ2

U0)...(ψk−i−1
U 0, φk−i−1

U 0)(γU0, γ′′U0)(ψk−i+1
U 0, φk−i+1

U 0)...(ψk−1
U 0, φk−1

U 0)

⊗W (FU,GU)(ψ2
U0,φ2

U0)...(ψk−i−1
U

0,φk−i−1
U

0)(γ′U0,γU0)(δk−i+1
U

0,ξk−i+1
U

0)...(δk−1
U

0,ξk−1
U

0)

M
��

W (FU,GU)(ψ2
U0,φ2

U0)...(ψk−i−1
U

0,φk−i−1
U

0)(γ′U0,γ′′U0)(ψk−i+1
U

0δk−i+1
U

0,φk−i+1
U

0ξk−i+1
U

0)...(ψk−1
U

0δk−1
U

0,φk−1
U

0ξk−1
U

0)

For α and β of different dimension and sharing a common cell of dimension lower than
either the composition is accomplished by first raising the dimension of the lower of α
and β to match the other by replacing it with a unit (see next Definition.)

Case 2.
It remains to describe composing along a 0–cell, i.e. along a common V–n–category

W. We describe composing a higher enriched cell with an enriched functor, and then
leave the remaining possibilities to be accomplished by applying the first case to the results
of such whiskering.

Composition with a V–n–functor K : W → X on the right is given by:

(Kα)U = I(n−k)+1)

αU
��

W(FU,GU)(ψ2
U0, φ2

U0)...(ψk−1
U 0, φk−1

U 0)

KFU,GU
��

X (KFU,KGU)(Kψ2
U0, Kφ2

U0)...(Kψk−1
U 0, Kφk−1

U 0)

Composing with a V–n–functor H : V → U on the left is given by (αH)V = αHV .
We describe unit k–cells for the above compositions.

4.3. Definition. A unit V–n:k–cell 1ψk−1 from a (k − 1)–cell ψk−1 to itself, sends each
U ∈ |U | to the V–((n− k) + 1)–functor

J ψk−1
U 0 : I((n−k)+1) → W(FU,GU)(ψ2

U0, φ2
U0)...(ψk−1

U 0, ψk−1
U 0)

It is straightforward to verify that these fulfill the requirements of Definition 4.1 and
indeed are units with respect to Definition 4.2.

Of course the unit for composition along a common cell of dimension more than 1 less
than the composed cells is constructed of units for all the dimensions between that of
the composed cells and that of the common cell. For example, the unit for composing
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along a common 0–cell may appear as follows:

11U
��

11U
��

U

1U

##

1U

;;111U
_*4 U

4.4. Theorem. V–n–categories, V–n–functors, and V–n:k–cells for k = 2 . . . n + 1 to-
gether have the structure of an (n+ 1)–category.
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