(1) Prove $\forall a, b \in \mathbb{Z}$, if $(a \mod 6 = 5 \text{ and } b \mod 4 = 3)$ then $4a + 6b \mod 8 = 6$. Use a Direct proof.

a) Write the assumption, translated to algebraic equations.

- b) Write what we want to show, translated to algebraic equations.
- c) Write the proof steps.
- (2) Suppose we were to prove the statement " $\forall y \in \mathbb{Z}, y \text{ is even} \Rightarrow (y^3 1) \text{ is odd."}$ (Answer using algebraic equations, without using the word "not" or the symbol " \sim .")

a)For a direct proof we assume ______ and show ______.

b) For proof using the contrapositive we assume ______ and show ______

c) For proof by contradiction we assume ______ and show that we reach a false conclusion.

(3) Use contradiction to prove: ∀a, b ∈ Z, if (a is even and b is odd) then 4 does not divide (a² + 2b²).
a) Negate the statement.

b) What do we assume? Translate to algebraic equations.

- c) Use the assumptions to prove that 4|2, as an algebraic equation.
- (4) Prove by induction that: $\forall n \in \mathbb{N}$, if $n \ge 2$ then $3|(2^{(4n-4)} + 2^{(2n-3)})$. a) Show the base case.
 - b) State the induction assumption, translate to algebraic equations.
 - c) State what we need to show, translate to algebraic equations.
 - d) Do the proof steps.
- (5) Use a Direct proof to prove: $\forall z \in \mathbb{Z}, 3 | (z+1) \Rightarrow z^2 \mod 3 = 1$.
 - a) Write the assumption, translated to algebraic equations.
 - b) Write what to show, translated to algebraic equations.
 - c) Do the proof steps.