Discrete Test 2 Review: first study quizzes!

(1) Prove $\forall a, b \in \mathbb{Z}$, if $(a \bmod 6=5$ and $b \bmod 4=3)$ then $4 a+6 b \bmod 8=6$. Use a Direct proof.
a) Write the assumption, translated to algebraic equations.
b) Write what we want to show, translated to algebraic equations.
c) Write the proof steps.
(2) Suppose we were to prove the statement " $\forall y \in \mathbb{Z}, y$ is even $\Rightarrow\left(y^{3}-1\right)$ is odd." (Answer using alegebraic equations, without using the word "not" or the symbol " \sim.")
a)For a direct proof we assume \qquad and show \qquad -.
b) For proof using the contrapositive we assume \qquad and show \qquad .
c) For proof by contradiction we assume \qquad and show that we reach a false conclusion.
(3) Use contradiction to prove: $\forall a, b \in \mathbb{Z}$, if (a is even and b is odd) then 4 does not divide $\left(a^{2}+2 b^{2}\right)$.
a) Negate the statement.
b) What do we assume? Translate to algebraic equations.
c) Use the assumptions to prove that $4 \mid 2$, as an algebraic equation.
(4) Prove by induction that: $\forall n \in \mathbb{N}$, if $n \geq 2$ then $3 \mid\left(2^{(4 n-4)}+2^{(2 n-3)}\right)$.
a) Show the base case.
b) State the induction assumption, translate to algebraic equations.
c) State what we need to show, translate to algebraic equations.
d) Do the proof steps.
(5) Use a Direct proof to prove: $\forall z \in \mathbb{Z}, 3 \mid(z+1) \Rightarrow z^{2} \bmod 3=1$.
a) Write the assumption, translated to algebraic equations.
b) Write what to show, translated to algebraic equations.
c) Do the proof steps.

For your use:

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26

(6) Given the one-time-pad sequence $(2,6,13,1)$ encrypt the word COOL. Your output will be letters.
(7) Use the BBS sequence $a_{n}=\left(a_{n-1}\right)^{2} \bmod p q$ to encrypt the word ZAP. Use the seed $a_{0}=11$ and the constant $p q=7 * 13=91$. Start the encryption with $n=1$.
(8) Use the same BBS sequence to decrypt the word LLJ. Use the seed $a_{0}=11$ and the constant $p q=7 * 13=91$.
(9) Use the sequence $a_{n}=5+3\left(a_{n-1} \bmod n\right) ; a_{0}=7$ to encrypt the digits 1101. Start with $n=1$.
(10) Use the sequence $a_{n}=n^{2}-1$ to decrypt the digits 1110 . Start with $n=1$.
(11) Given universe $\mathcal{U}=\{1,2,3,4,5,7,9,10,21,25\} ; A=\{7,9,10,21,25\}$;
and $B=\{5,4,7,10,21\}$. Find the following:

- $\overline{A \cup \bar{B}}$
- $(A-B) \cup(B-A)$
- $\overline{\overline{(B-A)} \cap A}$
- $|\mathcal{P}(A)|$
- $|\mathcal{P}(A \times B) \times A|$
- $|\mathcal{P}(A \cup B)|$
- $|\overline{A \cup B}|$
(12) Given $A=\{4,\{5,7\}, 7,\{7\},\{\{5\}, 7\}\}$.
- Find $|A|$

True or False?

- $\{\{5\}\} \in A$.
- $\{5\} \in A$.
- $5 \subseteq A$.
- $5 \in A$.
- $7 \in A$.
- $\{5,7\} \in A$.
- $\{7\} \in A$.
- $\{7\} \subseteq A$.
- $\{\{7\}, 7\} \subseteq A$.
- $\} \in A$.
- $\} \subseteq A$.
(13) Also study the quizzes!

