(1) Finish the following truth table.

P	Q	$\sim Q$	$P \Rightarrow Q$	$P \vee \sim Q$	$(P \Rightarrow Q) \wedge(P \vee \sim Q)$
T	T	F	T	T	T
T	F	T	F	T	F
F	T	F	T	F	F
F	F	T	T	T	T

(2) Suppose that P is false and Q is true. Find whether each of these statements is true (T) or false (F).

$$
\text { - }(P \Rightarrow \sim Q) \Rightarrow Q
$$

T

- $(P \wedge(Q \Longleftrightarrow(\sim P))) \vee Q$

T

- Repeat the above problems with the alternate given information that $Q \Rightarrow P$ is false. T, T
(3) Given the statement of implication " $x \in \mathcal{S}$ and $x \leq 5$) implies that ($x>2$ or $x=-10$.)"
- Find its converse; write it without the symbol " \sim."
$(x>2$ or $x=-10)$ implies that $(x \in \mathcal{S}$ and $x \leq 5)$
- Find its negation; write it without the symbol " \sim."
$(x \in \mathcal{S}$ and $x \leq 5)$ and $(x \leq 2$ and $x \neq-10$.)
- Find its contrapositive; write it without the symbol " \sim."
$(x \leq 2$ and $x \neq-10) \Rightarrow(x \notin \mathcal{S}$ or $x>5)$
- Find its inverse; write it without the symbol " \sim."
$(x \notin \mathcal{S}$ or $x>5) \Rightarrow(x \leq 2$ and $x \neq-10)$
- If $\mathcal{S}=\{3,4,7,11\}$, is the original statement true or false for all x ?

T
(4) Given the statement: $\forall x \in \mathbb{Z},(x$ even or $x \mid 18) \Rightarrow\left((x+1)\right.$ is odd and $\left.x^{2}>3\right)$.

- Find its negation; write it without the symbol "~."
$\exists x \in \mathbb{Z}$ such that (x even or $x \mid 18)$ and $\left((x+1)\right.$ is even or $\left.x^{2} \leq 3\right)$.
- Find a counterexample which proves the original statement is false.
$x=9$. Also good answers: $x=0,1,3$

2 (5) Given the statement: $\forall x \in \mathbb{R}, \exists y \in \mathbb{N}$ s.t. $y x \leq(y x+x)$.

- Find its negation; write it without the symbol " \sim."
$\exists x \in \mathbb{R}$ such that $\forall y \in \mathbb{N}, y x>(y x+x)$.
(6) Given the statement: If you have a french-apple pie then you have raisins, cherries and a glazed crust.
- Find its contrapositive; write it without the symbol "~."

If you don't have (raisins, cherries and a glazed crust) then you don't have a french-apple pie.

- Find its converse; write it without the symbol " \sim."

If you have raisins, cherries and a glazed crust then you have a french-apple pie. (Note: not true!)

- Rewrite the original statement using the words "only if."

You have a french-apple pie only if you have raisins, cherries and a glazed crust.

- Rewrite the statement using the word "necessary."

Having raisins, cherries and a glazed crust is necessary for having a french-apple pie.

- Rewrite the statement using the word "sufficient."

Having a french-apple pie is sufficient for having raisins, cherries and a glazed crust.
(7) All quiz problems are good to study from! Homework problems too-especially go over some more proofs from chapter 3.

