(1) Finish the following truth table.

O						
	P	Q	$\sim Q$	$P \Rightarrow Q$	$P \lor \sim Q$	$(P \Rightarrow Q) \land (P \lor \sim Q)$
	Т	Т	F	Τ	Τ	T
	Т	F	Т	F	Τ	F
	F	Τ	F	Τ	F	F
	\mathbf{F}	F	$\mid \mathrm{T}$	$\mid T \mid$	T	$\mid \mathrm{T}$

(2) Suppose that P is false and Q is true. Find whether each of these statements is true (T) or false (F).

$$(P \Rightarrow \sim Q) \Rightarrow Q$$

$$\bullet (P \land (Q \Longleftrightarrow (\sim P))) \lor Q$$

- \bullet Repeat the above problems with the alternate given information that $Q \Rightarrow P$ is false. T,T
- (3) Given the statement of implication " $(x \in \mathcal{S} \text{ and } x \leq 5)$ implies that (x > 2 or x = -10.)"

 Find its converse; write it without the symbol " \sim ." (x > 2 or x = -10) implies that $(x \in \mathcal{S} \text{ and } x \leq 5)$
 - Find its negation; write it without the symbol " \sim ." $(x \in \mathcal{S} \text{ and } x \leq 5)$ and $(x \leq 2 \text{ and } x \neq -10.)$
 - Find its contrapositive; write it without the symbol " \sim ." $(x \le 2 \text{ and } x \ne -10) \Rightarrow (x \notin \mathcal{S} \text{ or } x > 5)$
 - Find its inverse; write it without the symbol " \sim ." $(x \notin \mathcal{S} \text{ or } x > 5) \Rightarrow (x \le 2 \text{ and } x \ne -10)$
 - If $S = \{3, 4, 7, 11\}$, is the original statement true or false for all x?
- (4) Given the statement: $\forall x \in \mathbb{Z}$, $(x \text{ even or } x|18) \Rightarrow ((x+1) \text{ is odd and } x^2 > 3)$.

 Find its negation; write it without the symbol " \sim ." $\exists x \in \mathbb{Z} \text{ such that } (x \text{ even or } x|18) \text{ and } ((x+1) \text{ is even or } x^2 \leq 3)$.
 - Find a counterexample which proves the original statement is false. x = 9. Also good answers: x = 0, 1, 3

- ² (5) Given the statement: $\forall x \in \mathbb{R}, \exists y \in \mathbb{N} \text{ s.t. } yx \leq (yx + x).$
 - Find its negation; write it without the symbol " \sim ." $\exists x \in \mathbb{R} \text{ such that } \forall y \in \mathbb{N}, \ yx > (yx + x).$
 - (6) Given the statement: If you have a french-apple pie then you have raisins, cherries and a glazed crust.
 - Find its contrapositive; write it without the symbol "~." If you don't have (raisins, cherries and a glazed crust) then you don't have a french-apple pie.
 - Find its converse; write it without the symbol "~." If you have raisins, cherries and a glazed crust then you have a french-apple pie. (Note: not true!)
 - Rewrite the original statement using the words "only if."
 You have a french-apple pie only if you have raisins, cherries and a glazed crust.
 - Rewrite the statement using the word "necessary." Having raisins, cherries and a glazed crust is necessary for having a french-apple pie.
 - Rewrite the statement using the word "sufficient." Having a french-apple pie is sufficient for having raisins, cherries and a glazed crust.
 - (7) All quiz problems are good to study from! Homework problems too—especially go over some more proofs from chapter 3.