Example:

Let $a_{n}=$ the number of PIN numbers (n-digit) using just the digits 1,2,3 with repetition, but no more than three "1"',

$$
\begin{aligned}
& n=1 \quad \underline{1}, \underline{2}, a_{1}=3 \\
& n=2 \quad 11,12,21, \ldots, \quad a_{2}=3 \cdot 3=9 \\
& n=3 \quad 111,1^{2}-2, \ldots \quad a_{3}=3^{3}=27 \\
& h=4 \quad 1 \perp 1 \pm 1, \ldots a_{4}=3^{4}-1=80 \\
& n=5 \quad(11311,11122, \ldots
\end{aligned}
$$

Idea: the number of "1"', "2"'s, and "3"'s in a PIN always add up to n. So let those be exponents of x a gain! $f(x)$ will have a factor for each of the three. But, if we count the ways to make a $\operatorname{P/N}$ (sdigit) by working with $3{ }^{\prime \prime} 1$ " and two "2"s it is found by $\frac{5!}{3!2!}$. In general, $\frac{n!}{j!j_{2}!\cdots j_{k}!}$

The coefficient of x^{n} will have the right denominators for each collection of digits, according to their repetition.

$$
1212232
$$

i.. But the coeff. just counts 1 for each collection of digits, so we need the 7 ! for the numerator. We weed n ! in general.

So, $\quad a_{n}=\left(\right.$ coefficient of x^{n} in $\left.f(x)\right) \cdot n$!
where $\quad f(x)=\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}\right)\left(1+x+\frac{x^{2}}{2!}+\cdots\right)\left(1+x+\frac{x^{2}}{2!}+\cdots\right)$

This is

$$
\begin{align*}
& =\left(1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}\right)\left(e^{x}\right)\left(e^{x}\right) \tag{x}\\
& =e^{2 x}\left(1+x+\frac{1}{2} x^{2}+\frac{1}{6} x^{3}\right)
\end{align*}
$$

called the exponential

Check: Find a_{4} : (wolfram)
generating function
of a_{n}

$$
\begin{aligned}
& \text { Series }\left[e^{\wedge}(2 x) \times\left(1+x+x^{12} / 2+x^{1} / 6\right)\right] \\
& =1+3 x+\frac{9 x^{2}}{2}+\frac{9 x^{3}}{2}+\frac{1 x^{4}}{3}+\frac{29 x^{5}}{15}+\cdots \\
& \text { So } a_{4}=\frac{10}{3} \cdot 4!=80, a_{5}=\frac{29}{15} \cdot 5!=232
\end{aligned}
$$

Def. The exponential generating function (E.g.f.) of a_{n} is:

$$
f(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}
$$

as a Maclaurin power series.

Now compare this to the Maclaurin formula: we get $a_{n}=f^{(n)}(0)$.
(since we already divided by n !)

Side $-b_{y}$-side

	a_{n}	$0 . G . f . f(x)$	E.g.f $g(x)$

$\frac{\rightarrow \text { Find all the } a_{n}}{(\text { series }[f(x)])}$
\rightarrow Find function
\rightarrow Use for best when unordered
\rightarrow Use for....... best when unordered
\rightarrow Example If $a_{n}=1, f(x)=\frac{1}{1-x}$
\rightarrow Example....... If $a_{n}=2^{n}, f(x)=\frac{1}{1-2 x}$ If $a_{n}=2^{n}, g(x)=e^{2 x}$

Possibly: recapture a closed-form formula
for a_{n} from the generating function, $]$
Ex. Let $a_{n}=$ number of multipermutations length n from the multisubset $\{\infty \cdot P, 1 \cdot Q, \infty \cdot R\}$ suchthat: there is always $1^{\prime \prime} Q$ " and an even \# of " R "'s. (0 is even).

$$
\text { check: } a_{3}=3.2^{3-2}=6
$$

$$
\begin{aligned}
& n=0: \text { none } \rightarrow 0=a_{0} \\
& n=1: \underline{Q} \rightarrow 1=a_{1} \\
& n=2: Q Q, Q P \rightarrow 2=a_{2} \\
& n=3: Q P P, P Q P, P P Q, Q R R, Q Q R, R R Q \rightarrow 6=a_{3} \\
& \Gamma g(x)=\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots\right)(x)\left(1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots\right) \\
& =e^{x}(x)\left(\frac{1}{2}\left(e^{x}+e^{-x}\right)\right) \\
& =\frac{1}{2} x e^{2 x}+\frac{1}{2} x \\
& =\frac{1}{2} x \sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}+\frac{1}{2} x \\
& \begin{array}{l}
=\frac{1}{2} \sum_{n=0}^{\infty} \frac{2^{n} x^{n+1}}{n!}+\frac{1}{2} x \\
=\frac{1}{2} \sum_{n=1}^{\infty} \frac{2^{n-1} x^{n}}{(n-1)!}+\frac{1}{2} x
\end{array} \quad \rightarrow a_{n}=\left\{\begin{array}{l}
\frac{1}{2} n 2^{n-1}, n \neq 1 \\
\frac{1}{2} n 2^{n-1}+\frac{1}{2}, n=1
\end{array}\right. \\
& =\frac{1}{2} \sum_{n=0}^{\infty} \frac{n 2^{n-1} x^{n}}{n(n-1)!}+\frac{1}{2} x \\
& =\frac{1}{2} \sum_{n=0}^{\infty}\left(n 2^{n-1}\right) \frac{x^{n}}{n!}+\frac{1}{2} \frac{x^{1}}{1!} \\
& a_{n}= \begin{cases}n 2^{n-2}, & n \neq 1 \\
1, & n=1\end{cases}
\end{aligned}
$$

