Calculus III. Test 2, Additional Review

1. For each function
$$z = f(x, y)$$
 find two partial derivatives: f_x and f_y .
(a) $f(x, y) = \frac{\ln y}{x}$

$$f_x = f_y =$$

(b)
$$f(x,y) = (y-2)^{(e^x)}$$

$$f_x = f_y =$$

(c)
$$f(x,y) = \sqrt[2y]{x-2}$$

$$f_x = f_y =$$

(d)
$$f(x,y) = \sin(xy)$$

$$f_x = f_y =$$

(e) $f(x,y) = x^2 6^y$

$$f_x = 1$$
 $f_y = 1$

2. Use Lagrange Multipliers to find the absolute min and max of $f(x,y) = 5^{(2x+3y)}$ on the curve $x^2 + 3y^2 = 28$.

Use $f_x = 5^{(2x+3y)} 2 \ln 5;$ $f_y = 5^{(2x+3y)} 3 \ln 5$

3. Given z = f(x, y) has a critical point where both partials are 0 at (1, 2).

Also	f(7,8) = 15	$f_{xx}(1,2) = 3$
and	$f_x(7,8) = 5$	$f_{yy}(1,2) = 4$
and	$f_y(7,8) = -2$	$f_{xy}(1,2) = 5$

a) Find the directional derivative of f over (7,8) in the direction of $\vec{\mathbf{v}}=\langle 3,-1\rangle$.

b) Find the 2d direction vector of max decrease for f(x,y) over (x,y) = (7,8).

c) Find the max rate of increase for f over (7,8).

d) Find whether the point on f over (1,2) is a local max, local min, saddle or inconclusive. Show the value of D.

e) For a curve $\vec{\mathbf{r}}(t)$ obeying $\vec{\mathbf{r}}(5) = \langle 7, 8 \rangle$ and $\vec{\mathbf{r'}}(5) = \langle 3, -7 \rangle$; find $\frac{dz}{dt}$ when t = 5.

- 4. Given z = f(x, y) has a horizontal tangent plane over (1, 2) and it has tangent plane given by 3x 2y z = 5 over (7, 8).
 - Also $f_{xx}(1,2) = -2;$ and $f_{yy}(1,2) = -3;$ and $f_{xy}(1,2) = 1$

a) Find the instantaneous rate of change in z at (7,8), as x increases and y is held constant at 8.

b) Find the instantaneous rate of change in z with respect to t at t = 0 where (x, y) is on the curve $\vec{\mathbf{r}}(t) = \langle t^2 + 7, 8e^t, \rangle$.

c) Use the linearization of f(x, y) over (7, 8) to approximate f(7.1, 7.9).

d) Find whether the point on f over (1,2) is a local max, local min, saddle or inconclusive. Show the value of D.

e) Find the normal vector to the tangent plane of f at (1,2).