Calculus III. Test 1, Additional Review

1. For each function z = f(z,y) find two partial derivatives: f. and f,.
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(d) f(z,y) = sin(zy)
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3. Given z = f(z,y)

Also f(7,8)=15
and f,(7,8)=5
and f,(7,8) = —2

a) Find the directional derivative of f over (7,8) in the direction of V= (3,-1) .
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b) Find the 2d direction vector of max decrease for f(z,y) over (z,y) = (7,8).
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c) Find the max rate of increase for f over (7,8).
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e) For a curve i(t) obeying ©(5) = (7,8) and r'(5) = (3,-7); find & whent=35.
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4. Given z = f(z,y) has a horizontal tangent plane over (1,2)
and it has tangent plane given by 3z — 2y — z = 5 over (7,8).
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a) Find the instantaneous rate of change in z at (7, 8), as 7 increases and y is held

constant at 8.
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b) Find the instantaneous rate of change in z with respect to ¢t at ¢ = 0 where (z,y) /
is on the curve F(t) = (t> + 7, 8¢, ). X ¢
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c) Use the linearization of f(z,y) over (7,8) to approximate f(7.1,7.9).
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e) Find the normal vector to the tangent plane of f at (1,2).
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