Calculus III. Test 1, Additional Review

1. For each function z = f(x, y) find two partial derivatives: f_x and f_y .

(a)
$$f(x,y) = \frac{\ln y}{x}$$

$$f_x = \begin{bmatrix} -\ln x \\ \chi^2 \end{bmatrix}$$

$$f_y = \left[\begin{array}{c} \frac{1}{\chi_y} \end{array}\right]$$

(b)
$$f(x,y) = (y-2)^{(e^x)}$$

$$f_x = \left[(\gamma - 2)^{e^x} | h(\gamma - 2) e^x \right]$$

$$f_{y} = \left[e^{x} (y - 2)^{(e^{x} - 1)} \right]$$

(c)
$$f(x,y) = \sqrt[2y]{x-2}$$
 = $(\chi - 2)^{\left(\frac{1}{2y}\right)}$

$$f_x = \sqrt{\frac{1}{2m} \left(\chi - 2\right)^{\left(\frac{1}{2m} - 1\right)}}$$

$$f_y = \int (\chi - 2)^{\frac{1}{2\eta}} \ln(\chi - 2) \left(\frac{-1}{2\eta^2}\right)$$

(d)
$$f(x,y) = \sin(xy)$$

$$f_x = \sqrt{\gamma(\cos(x \gamma))}$$

$$f_y = \left(\chi \left(\cos \left(\chi \gamma \right) \right) \right)$$

(e)
$$f(x,y) = x^2 6^y$$

$$f_x = \sqrt{2 \times 6^{2}}$$

$$f_{y} = \left[\frac{\chi^{2} 6^{9} / n 6}{ } \right]$$

3. Given
$$z = f(x, y)$$

Also $f(7, 8) = 15$
and $f_x(7, 8) = 5$
and $f_y(7, 8) = -2$

a) Find the directional derivative of f over (7,8) in the direction of $\vec{\mathbf{v}} = \langle 3, -1 \rangle$.

$$D_{r}f = \frac{\nabla f \cdot \vec{v}}{|\vec{v}|} = \frac{\langle 5, -2 \rangle \cdot \langle 3, -1 \rangle}{\sqrt{9+1}} = \frac{17}{\sqrt{10}}$$

b) Find the 2d direction vector of max decrease for f(x,y) over (x,y)=(7,8).

$$-\nabla F = \left[\left\langle -5, 2 \right\rangle \right]$$

c) Find the max rate of increase for f over (7,8).

$$|\nabla f| = |\langle 5, -2 \rangle| = \sqrt{25 + 4} = \left[\sqrt{29}\right]$$

e) For a curve $\vec{\mathbf{r}}(t)$ obeying $\vec{\mathbf{r}}(5) = \langle 7, 8 \rangle$ and $\vec{\mathbf{r}'}(5) = \langle 3, -7 \rangle$; find $\frac{dz}{dt}$ when t = 5.

$$\frac{dz}{dt} = \nabla f \cdot \vec{r}' = \langle 5, -2 \rangle \cdot \langle 3, -7 \rangle = \boxed{29}$$

4. Given z = f(x, y) has a horizontal tangent plane over (1, 2) and it has tangent plane given by 3x - 2y - z = 5 over (7, 8).

$$\frac{1}{2} = 3x - 2y - 5 \Rightarrow 7 = 3(7) - 2(8) - 5$$

a) Find the instantaneous rate of change in z at (7,8), as x increases and y is held constant at 8.

$$f_{x}(7,8) = \boxed{3}$$
since $\vec{n} = \langle 3, -2, -1 \rangle$

$$f_{x} \xrightarrow{f_{y}}$$

b) Find the instantaneous rate of change in z with respect to t at t = 0 where (x, y) is on the curve $\vec{r}(t) = \langle t^2 + 7, 8e^t, \rangle$.

$$\frac{dz}{dt} = \nabla f \cdot \vec{r}' \qquad \qquad \vec{r}'(0) = \langle 0, 8 \rangle$$

$$= \langle 3, -2 \rangle \cdot \langle 0, 8 \rangle = \boxed{-16}$$

c) Use the linearization of f(x,y) over (7,8) to approximate f(7.1,7.9).

$$L(7.1, 7.9) = f_x(7.1-7) + f_y(7.9-8) + 2.$$

$$= 3(0.1) + -2(-0.1) + 0 = \boxed{0.5}$$

$$\boxed{OR} = 3(7.1) - 2(7.9) - 5 = 0.5$$

e) Find the normal vector to the tangent plane of f at (1,2).

horizontul

(given)

$$\begin{array}{c|c}
\text{f at } (1,2). & \text{in or restrict} \\
\text{(g iven)} \\
\hline
\text{(g iven)} \\
\hline
\text{(g iven)}
\end{array}$$