Calculus III. Test 1, Additional Review

1. For each function z = f(x, y) find two partial derivatives: f_x and f_y .

(a)
$$f(x,y) = \frac{\ln y}{x}$$

 $f_x =$

 $f_y =$

(b)
$$f(x,y) = (y-2)^{(e^x)}$$

 $f_x =$

 $f_y =$

(c)
$$f(x,y) = \sqrt[2y]{x-2}$$

 $f_x =$

 $f_y =$

(d)
$$f(x,y) = \sin(xy)$$

 $f_x =$

 $f_y =$

(e)
$$f(x,y) = x^2 6^y$$

 $f_x =$

 $f_y =$

3. Given
$$z = f(x, y)$$

Also
$$f(7,8) = 15$$

and
$$f_x(7,8) = 5$$

and
$$f_y(7,8) = -2$$

a) Find the directional derivative of f over (7,8) in the direction of $\vec{\mathbf{v}}=\langle 3,-1\rangle$.

b) Find the 2d direction vector of max decrease for f(x,y) over (x,y)=(7,8).

c) Find the max rate of increase for f over (7,8).

e) For a curve $\vec{\mathbf{r}}(t)$ obeying $\vec{\mathbf{r}}(5) = \langle 7, 8 \rangle$ and $\vec{\mathbf{r}'}(5) = \langle 3, -7 \rangle$; find $\frac{dz}{dt}$ when t = 5.

- 4. Given z = f(x, y) has a horizontal tangent plane over (1, 2) and it has tangent plane given by 3x 2y z = 5 over (7, 8).
 - a) Find the instantaneous rate of change in z at (7,8), as x increases and y is held constant at 8.

b) Find the instantaneous rate of change in z with respect to t at t=0 where (x,y) is on the curve $\vec{\mathbf{r}}(t)=\langle t^2+7,8e^t,\rangle$.

c) Use the linearization of f(x,y) over (7,8) to approximate f(7.1,7.9).

e) Find the normal vector to the tangent plane of f at (1,2).