Making a million with a little Calc 2 (and a second major/minor/5-year Master's in Math)!

Recall the p-series.

converges for $p>1$.

What does the p -series converge to?

$$
\begin{aligned}
& \begin{array}{lll}
\mathrm{P}=1 & \sum_{n=1}^{\infty} \frac{1}{n^{1}}= & \infty \\
\mathrm{P}=2 & \sum_{n=1}^{\infty} \frac{1}{n^{2}}= & \frac{\pi^{2}}{6} \quad \text { These were discovered by Euler! }
\end{array} \\
& 1.2020569032 \ldots \text { Open question: Is this number transcendental? } \\
& \mathrm{P}=3 \quad=\quad \text { Apery's constant. } \\
& \mathrm{P}=4 \quad=\quad \frac{\pi^{4}}{90} \\
& \mathrm{P}=5 \quad=\quad 1.0369277551 \ldots \text { Open question: Is this number irrational? } \\
& \mathrm{P}=6 \quad=\quad \frac{\pi^{6}}{945} \\
& \mathrm{P}=7 \quad=\quad 1.0083492774 \ldots \\
& \mathrm{P}=8 \quad=\quad \frac{\pi^{8}}{9450} \\
& \mathrm{P}=9 \quad=\quad 1.0020083928 \ldots \\
& \mathrm{P}=10 \quad=\quad \frac{\pi^{10}}{93555} .
\end{aligned}
$$

For more, see http://mathworld.wolfram.com/RiemannZetaFunction.html

Here are some more denominators for the values of p-series with even p.

$$
\text { (numerator }=, C \pi^{p} \text { where } c \text { is found at http://oeis.org/A046988) }
$$

6,

There is a function called the Riemann zeta function $\zeta(p)$ which is equal to the p-series for $p>1$ but which can also give a value for any complex number input $p=a+b i$ (except $p=1$.) It is the analytic continuation of the p-series. Here's a formula by H. Hasse:
$\zeta(s)=\frac{1}{s-1} \sum_{n=0}^{\infty} \frac{1}{n+1} \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(k+1)^{1-s}$
(Here p is s. There's also a faster formula. Try some calculations, with real numbers: http://www.math.uakron.edu/~sf34/mandelbrot/riemann_fast.htm)
$\zeta(-2)=0$
$\zeta(1 / 2+14.134725 \ldots i)=0 \quad$ Sometimes the answer is zero!
We can reinterpret $1+2+3+4+\ldots$ as $\zeta(-1)$, if we agree that the divergent sum should be replaced by ζ. Turns out: $\zeta(-1)=-1 / 12$ (This can be found several ways. However, any method requires "re-assigning" divergent series the values of certain analytic continuations. Cool thing though-sometimes nature seems to do that reassignment itself when virtual particles are involved...look up Hawking radiation and the Casimir effect.)

How to win \$1,000,000!

Answer the following:

When does the analytic continuation of the p-series for complex numbers (the zeta function) equal 0 ?
It's already known that the answer includes all the negative even integers, and conjectured that the real part of any non-trivial zero of the Riemann zeta function is $1 / 2$. If you want you can prove this equivalent theorem, the inequality:

$$
\left|\pi(x)-\int_{2}^{x} \frac{\mathrm{~d} t}{\ln (t)}\right| \leq C \sqrt{x} \ln (x)
$$

where $\pi(x)$ is the number of primes less than or equal to x, and $C=1 /(8 \pi)$ for all $x \geq 2657$.
Lots more cool stuff is connected, including quasicrystals. More information on what is already known can be found at http://en.wikipedia.org/wiki/Riemann hypothesis

