7.2 continued

Review $\int+r i y \cdot d x$

7.3 trig substitution.

(2)

$$
\begin{aligned}
& \int \frac{\sqrt{9-x^{2}}}{x^{2}} d x \\
& =\int \frac{3 \cos \theta}{9 \sin ^{2} \theta} 3 \cos \theta d \theta \\
& =\int \frac{\cos ^{2} \theta}{\sin ^{2} \theta} d \theta \\
& =\int \cot ^{2} \theta d \theta \\
& =\int \csc ^{2} \theta-1 d \theta=-\cot \theta-\theta+c \\
& =-\sqrt{9-x^{2}} / x-\sin ^{-1}\left(\frac{x}{3}\right)+c
\end{aligned}
$$

(1)

$$
\begin{aligned}
& y^{2}=1-x^{2} \\
& x^{2}+y^{2}=1 \\
& \begin{aligned}
& \int \sqrt{1-x^{2}} d x \\
= & \int \sqrt{\cos ^{2} \theta} \cos \theta d \theta
\end{aligned} \\
& x=\sin \theta \\
& d x=\cos \theta d \theta \\
& 1-x^{2}=1-\sin ^{2} \theta=\cos ^{2} \theta \\
& =\int \cos ^{2} \theta d \theta \\
& =\int \frac{1}{2}+\frac{\cos 2 \theta}{2} d \theta \\
& =\frac{1}{2} \theta+\frac{1}{4} \sin 2 \theta+c \\
& \theta=\sin ^{-1} x \\
& \cos \theta=\sqrt{1-x^{2}} \\
& =\frac{1}{2} \theta+\frac{1}{4} 2 \sin \theta \cos \theta+c \\
& =\frac{1}{2} \sin ^{-1} x+\frac{1}{2} x \sqrt{1-x^{2}}+c
\end{aligned}
$$

check: derivative

More:

Use $1+\tan ^{2} \theta=\sec ^{2} \theta$

Use $\sec ^{2} \theta-1=\tan ^{2} \theta$

Ex: $\quad \int \frac{1}{x^{2} \sqrt{x^{2}+4}} d x \quad\left(e x^{3}, p y^{480}\right)$

$$
\begin{aligned}
& x=2 \tan \theta \\
& d x=2 \sec ^{2} \theta d \theta \\
& \begin{aligned}
\sqrt{x^{2}+4} & =\sqrt{4 \tan ^{2} \theta+4} \\
& =\sqrt{4 \sec ^{2} \theta} \\
& =2 \sec \theta
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
=\int \frac{1}{4} \frac{\sec \theta}{\tan ^{2} \theta} d \theta & =\int \frac{1}{4} \frac{\cos \theta}{\sin ^{2} \theta} d \theta \\
& =-\frac{1}{4 u}+c|c| c \\
x & =\frac{-1}{4 \sin \theta}+c=\cos \theta l \theta \\
& =\frac{-1}{4\left(\frac{x}{\sqrt{x^{2}+4}}\right)}=\frac{-\sqrt{x^{2}+4}}{4 x}+c
\end{aligned}
$$

