

Course overview: 1) integration

Recall the Fundamental Theorem of Calculus: the area under the curve increases at the rate equal to the curve height at x. So the derivative of the area function is the original function.

$A=F(b)-F(a)$, where $F^{\prime}=f$
\rightarrow new methods of integration
\rightarrow applications of integration
\rightarrow areas + volumes

$$
A=\int_{a}^{b} f(x) d x-\int_{a}^{b} g(x) d x
$$

2) Sequences and series: used to get arbitrarily accurate answers to

$L_{\text {if }}=$ bottom pressure - top pressure + correction 1

- correction $2+\ldots-\ldots$
6.1 Areas between curves.

Integral Review

$$
\begin{aligned}
& \text { 1) } \int_{0}^{2} x e^{x^{2}-3} d x \left\lvert\, \begin{array}{l}
\frac{d u}{d x}=2 x \\
\frac{d u}{2}=2 x d x \\
\frac{1}{2} d u=x d x
\end{array}\right. \\
& =\int_{x=0}^{x=2} \frac{1}{2} e^{u} d u \\
& = \\
& =\left[\frac{1}{2} e^{u}\right]_{x=0}^{2} \\
& =\left[\frac{1}{2} e^{x^{2}-3}\right]_{0}^{2}=\frac{1}{2} e^{4-3}-\frac{1}{2} e^{0-3}=\frac{1}{2}\left(e-\frac{1}{e^{3}}\right)
\end{aligned}
$$

$$
\begin{array}{l|l}
O R \\
\begin{array}{l|l}
x & u \\
0 & -3
\end{array} & \int_{-3}^{1} \frac{1}{2} e^{u} d u=\left[\frac{1}{2} e^{u}\right]_{-3}^{1}=\frac{1}{2}\left(e-\frac{1}{e^{3}}\right)
\end{array}
$$

2)

$$
\begin{aligned}
& \int_{1}^{5} \sqrt{x-1} d x \\
&= \int_{1}^{5}(x-1)^{1 / 2} d x \\
&= {\left[\frac{2}{3}(x-1)^{3 / 2}\right]_{1}^{5}=\frac{2}{3}\left(4^{3 / 2}-0\right)=\frac{16}{3} u=x-1 } \\
& u=d x
\end{aligned}
$$

Alternate method:

$$
\begin{aligned}
\rightarrow A & =\int_{0}^{2} 5 d y-\int_{0}^{2}\left(y^{2}+1\right) d y \\
& =10-\left[\frac{y^{3}}{3}+y\right]_{0}^{2}=\frac{16}{3}
\end{aligned}
$$

OR $\quad \int_{0}^{2} 5-\left(y^{2}+1\right) d y$

$$
\begin{aligned}
=\int_{0}^{2}\left(4-y^{2}\right) d y & =\left[4 y-\frac{y^{3}}{3}\right]_{0}^{2} \\
& =8-\frac{8}{3}=\frac{16}{3} .
\end{aligned}
$$

Two types of area:
I.

Example Find the area enclosed between $y=x+4$ and $y=x^{2}-2 x$, for $x>0$.

$$
y=x^{2}-2 x, \quad y, \quad a=0, b=\text { intersection }
$$

Steps 1) decide how to "slice": type I
(since the top and bottom of the slice are the two functions for every slice.)
2) find missing b, the intersection:

Set equal: $x^{2}-2 x=x+4$

$$
\begin{gathered}
\Rightarrow \quad x^{2}-3 x-4=0 \\
\Rightarrow \quad(x-4)(x+1)=0 \\
x=4, x=-1
\end{gathered}
$$

3) Set up integral: $A=\int_{0}^{4}\left((x+4)-\left(x^{2}-2 x\right)\right) d x$
4) Simplify t solve: $A=\int_{0}^{4}\left(3 x+4-x^{2}\right) d x$

$$
\begin{aligned}
& =\left[\frac{3 x^{2}}{2}+4 x-\frac{x^{3}}{3}\right]_{0}^{4} \\
& =24+16-\frac{64}{3}=40-\frac{64}{3}=\frac{56}{3}
\end{aligned}
$$

