Calculus II. Review for Test 3 with answers.

1. For each series, what does the ratio test tell us? [converge absolutely, diverge, or inconclusive]. Show your work by finding the limit.
(a) $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n!}$

A: Limit $=0<1$, so converges absolutely.
(b) $\sum_{n=1}^{\infty} \frac{2^{\left(n^{2}\right)}}{(2 n)!}$

A: Limit $=\infty>1$, so diverges.
2. For each series, what does the root test tell us? [converge absolutely, diverge, or inconclusive]. Show your work by finding the limit.
(a) $\sum_{n=1}^{\infty}\left(\frac{-2 n}{3 n+1}\right)^{n}$

A: Limit $=2 / 3<1$, so converges absolutely.
(b) $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}\right)^{n}$

A: Limit $=0<1$, so converges absolutely.
3. For this power series, determine the radius of convergence.
(a) $\sum_{n=1}^{\infty} \frac{2(x-3)^{n}}{n 5^{n}}$

A: $R=5$
4. For this power series centered at $a=2$, the radius of convergence is found to be $R=3$. Determine the interval of convergence. (All you have to do is check the endpoints!)
(a) $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n 3^{(n+1)}}$

A: $[-1,5)$
5. Find a power series for the following functions, by starting with a fact from the list of known Maclaurin series. Simplify just enough to combine the powers of x into a single expression.
(a) $f(x)=e^{-x}$

A: $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{n}}{n!}$
(b) $f(x)=x^{2} \sin (2 x)$

A: $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{(2 n+1)} x^{(2 n+3)}}{(2 n+1)!}$
(c) $f(x)=\frac{2 x}{(1-x)^{2}}$

A: $\sum_{n=0}^{\infty} 2 n x^{n}$
(d) $f(x)=\ln (1+2 x)$

A: $\sum_{n=0}^{\infty} \frac{(-1)^{n} 2^{(n+1)} x^{(n+1)}}{n+1}$
(e) $f(x)=\frac{3}{2-x}$

A: $\sum_{n=0}^{\infty} \frac{3 x^{n}}{2^{(n+1)}}$
6. Given $C=\left\{\begin{array}{c}x=t^{2}+1 \\ y=e^{(t+2)}-t\end{array} t \in[-3,7]\right.$.

Also given is that $y^{\prime}=\frac{e^{(t+2)}-1}{2 t}$.
(a) Find the (x, y) point(s) with horizontal tangent to the curve and use the second derivative to tell whether they are mins, maxes or inconclusive.

A: $(x, y)=(5,3)$. At this point $y^{\prime \prime}=\frac{1}{16}>0$, so this point is a min.
(b) Set up the integral for the arc length of the curve.

$$
A: \int_{-3}^{7} \sqrt{4 t^{2}+\left(e^{(t+2)}-1\right)^{2}} d t
$$

7. Given $C=\left\{\begin{array}{l}x=1-2 \cos t \\ y=-2-\sin t\end{array}\right.$ for $t \in[\pi / 2,3 \pi / 2]$.
(a) Find the Cartesian $x y$-equation that the curve obeys: eliminate t.

$$
A: \frac{(x-1)^{2}}{4}+(y+2)^{2}=1
$$

(b) Sketch C. Use arrows and label the points for the first and last t-values.
(answer shown in class.)
8. For the polar point $(r, \theta)=(-3,7 \pi / 6)$, find the (x, y) coordinates. Graph the point.

A: $(x, y)=\left(\frac{3 \sqrt{3}}{2}, \frac{3}{2}\right)$ (Graph shown in class.)
9. For the point $(x, y)=(-5 \sqrt{2}, 5 \sqrt{2})$ find the polar coordinates with positive radius r.

A: $(r, \theta)=\left(10, \frac{3 \pi}{4}\right)$.
10. Graph the polar plot of $r=1-\sin \theta$.

A: (answer shown in class.)
11. Find the $n=3$ term of the Taylor series for $f(x)=x^{3}+e^{2 x}$ centered at $a=5$.

$$
A: \frac{\left(6+8 e^{10}\right)(x-5)^{3}}{3!}
$$

12. Also study the quizzes, and the homework questions. These are good test questions too!
