Calculus II. Review for Test 2.

1. Find these definite integrals and classify as "divergent" or "convergent":
a) $\frac{1}{2 e^{9}}$ (converges)
b) $-\infty$ (diverges) (Hint: it's $-\infty$ because you take $\lim _{t \rightarrow 0^{-}}$.)
c) $\frac{32}{3}$ (converges)
2. For each of these sequences, find the limits, if they exist, and decide "diverges" or "converges."
a) 0 (converges) (Hint: $(2 / 3)^{n}$ goes to zero since $2 / 3$ is a fraction smaller than 1.)
b) 0 (converges)
c) $1 / 7$ (converges)
d) $D N E$ (diverges) (Hint: $\cos (n \pi)=(-1)^{n}$ just from looking at the graph of $\cos x$.)
e) $\pi / 6$ (converges)
f) 0 (converges)
g) $D N E$ (diverges)
3. For each series, what does the limit test for divergence tell us? [converge, diverge, or inconclusive] Show your work by performing the test.
a) diverges (since limit $=1 / 5$.)
b) inconclusive (since limit $=0$.)
c) inconclusive (since limit $=0$.)
4. For each series, what does the geometric series test tell us? [not applicable, converge, diverge, or inconclusive] Show your work, and find the value if it converges.
a) converges: $\frac{3 / \pi}{1-3 / \pi}$
b) diverges : $r=\frac{5}{\sqrt{3}}>1$
c) diverges : $r=2>1$
d) converges: $-1 / 3$
e) converges : $3 \frac{1 /\left(e^{2}\right)}{1-\left(1 /\left(e^{2}\right)\right)}$
f) $N A$ (Hint: does not apply since there is no way to write as r^{n}.)
5. For each series, what does the p-series test tell us? [not applicable, converge, diverge, or inconclusive] Show your work.
a) $N A$
b) diverges $p=0.5 \leq 1$)
c) diverges $p=1 \leq 1$
d) converges $p=3>1$
6. For each series, what does the integral test tell us? [not applicable, converge, diverge, or inconclusive] Show your work.
a) converges: $\quad \int_{x=1}^{\infty} \frac{\sqrt{x}+4}{x^{2}} d x=6$
b) diverges : $\quad \int_{x=1}^{\infty} \frac{1}{\sqrt{x+1}} d x=\infty$
c) converges : $\int_{x=1}^{\infty}\left(\frac{1}{x}\right)^{3} d x=1 / 2$
d) $N A$ (since not positive)

Note $\sum_{n=1}^{\infty} \frac{1}{2^{n}}$ does converge by the integral test since the integral is $\int_{1}^{\infty} 1 /\left(2^{x}\right) d x=\frac{1}{2 \ln 2}$.
e) $N A$ (since $1 / \cos ^{2} x$ is not decreasing)
7. For each series, what does the comparison test tell us? [not applicable, converge, or diverge] Show your work.
a) converges : $\frac{1}{n^{3}} \geq \frac{1}{2 n^{3}+1}$ (Hint: for comparison test and limit comparison we will always be comparing to a p-series or geometric series!)
b) converges: $\frac{9^{n}}{10^{n}} \geq \frac{9^{n}}{3+10^{n}}$
c) diverges: $\frac{6^{n}}{5^{n}} \leq \frac{6^{n}}{-4+5^{n}}$
d) $N A$ (since not positive)
8. For each series, what does the limit comparison test tell us? [not applicable, converge, or diverge] Show your work.
a) diverges: $\lim _{n \rightarrow \infty} \frac{\frac{1}{2 n+1}}{\frac{1}{n}}=1 / 2$
b) converges: $\lim _{n \rightarrow \infty} \frac{\frac{n+2}{(n+1)^{3}}}{\frac{1}{n^{2}}}=1$
c) converges: $\lim _{n \rightarrow \infty} \frac{\frac{2^{n}}{5^{n}-n}}{\frac{2^{n}}{5^{n}}}=1$
9. For each series, use the alternating series test or the limit test for divergence to decide: [converge, or diverge]. Show your work.
a) converges: $\lim _{n \rightarrow \infty} \frac{1}{\ln (n+1)}=0$
b) converges: $\lim _{n \rightarrow \infty} \frac{1}{4 n+1}=0$
c) diverges: $\lim \frac{(-1)^{n}}{n}=D N E$ since $\lim \frac{1}{-n}=\infty$
10. Decide if the sums converge or diverge, explain why. If there is a formula for the sum, find the value.
a) converges: $\quad \int_{x=1}^{\infty} x^{2} e^{-x^{3}} d x=\frac{1}{3 e}$ (by integral test)
b) diverges: $\lim _{n \rightarrow \infty} e^{2 n}=\infty$ (by limit test for divergence)
c) converges: $\frac{2 / e^{3}}{1-2 / e^{3}}$ (by geometric series test)
11. For each series, what does the ratio test tell us? [converge absolutely, diverge, or inconclusive]. Show your work by finding the limit.
(a) $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n!}$

A: Limit $=0<1$, so converges absolutely.
(b) $\sum_{n=1}^{\infty} \frac{2^{\left(n^{2}\right)}}{(2 n)!}$

A: Limit $=\infty>1$, so diverges.
12. For each series, what does the root test tell us? [converge absolutely, diverge, or inconclusive]. Show your work by finding the limit.
(a) $\sum_{n=1}^{\infty}\left(\frac{-2 n}{3 n+1}\right)^{n}$

A: Limit $=2 / 3<1$, so converges absolutely.
(b) $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}\right)^{n}$

A: Limit $=0<1$, so converges absolutely.
13. For this power series, determine the radius of convergence.
(a) $\sum_{n=1}^{\infty} \frac{2(x-3)^{n}}{n 5^{n}}$

A: $R=5$
14. For this power series, the radius of convergence is found to be $R=3$. Determine the interval of convergence.
(a) $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n 3^{(n+1)}}$

A: $[-1,5)$
15. For this power series, determine the interval of convergence.

$$
\sum_{n=1}^{\infty} \frac{5^{n} x^{n}}{1+2^{n}}
$$

A: $\left(\frac{-2}{5}, \frac{2}{5}\right)$
16. Also study the quizzes, and the homework questions. These are good test questions too!

