Calculus II. Review for Test 2.

1. Find these definite integrals and classify as "divergent" or "convergent":
a) $\int_{3}^{\infty} x e^{\left(-x^{2}\right)} d x$
b) $\int_{-1}^{0} \frac{3}{x^{5}} d x$
c) $\int_{-2}^{14} \frac{1}{\sqrt[4]{x+2}} d x$
2. For each of these sequences, find the limits, if they exist, and decide "diverges" or "converges."
a) $\lim _{n \rightarrow \infty} \frac{2^{n}+n}{3^{n}+1}$
b) $\lim _{n \rightarrow \infty} \frac{n+4 n^{3}}{2 n^{4}+1}$
c) $\lim _{n \rightarrow \infty} \frac{n^{3}+n^{2}}{7 n^{3}+1}$
d) $\lim _{n \rightarrow \infty} \frac{7}{\cos (n \pi)}$
e) $\lim _{n \rightarrow \infty} \frac{\tan ^{-1}(n)}{3}$

$$
\text { f) } \lim _{n \rightarrow \infty} \frac{(-1)^{n}}{3^{n}}
$$

g) $\lim _{n \rightarrow \infty} \frac{3^{n}(-1)^{n}}{2^{n}}$
3. For each series, what does the limit test for divergence tell us? [converge, diverge, or inconclusive] Show your work by performing the test.
a) $\sum_{n=1}^{\infty} \frac{e^{2 n}+3 n}{5 e^{2 n}-6}$
b) $\sum_{n=1}^{\infty} \frac{2^{n}}{3^{n}}$
c) $\sum_{n=1}^{\infty} \frac{3}{e^{2 n}}$
4. For each series, what does the geometric series test tell us? [not applicable, converge, diverge, or inconclusive] Show your work, and find the value if it converges.
a) $\sum_{n=1}^{\infty} \frac{3^{n}}{\pi^{n}}$
b) $\sum_{n=1}^{\infty} \frac{5^{n}}{(\sqrt{3})^{n}}$
c) $\sum_{n=1}^{\infty} \frac{3}{(0.5)^{n}}$
d) $\sum_{n=1}^{\infty} \frac{1}{(-2)^{n}}$
e) $\sum_{n=1}^{\infty} \frac{3}{e^{2 n}}$
f) $\sum_{n=1}^{\infty} \frac{n}{e^{2 n}}$
5. For each series, what does the p-series test tell us? [not applicable, converge, diverge, or inconclusive] Show your work.
a) $\sum_{n=1}^{\infty} \frac{5^{n}}{(\sqrt{3})^{n}}$
b) $\sum_{n=1}^{\infty} \frac{3}{n^{(0.5)}}$
c) $\sum_{n=1}^{\infty} \frac{2}{n}$
d) $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{3}$
6. For each series, what does the integral test tell us? [not applicable, converge, diverge, or inconclusive] Show your work.
a) $\sum_{n=1}^{\infty} \frac{\sqrt{n}+4}{n^{2}}$
b) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}}$
c) $\sum_{n=1}^{\infty}\left(\frac{1}{n}\right)^{3}$
d) $\sum_{n=1}^{\infty} \frac{1}{(-2)^{n}}$
e) $\sum_{n=1}^{\infty} \frac{1}{\cos ^{2}(n)}$
7. For each series, what does the comparison test tell us? [not applicable, converge, or diverge] Show your work.
a) $\sum_{n=1}^{\infty} \frac{1}{2 n^{3}+1}$
b) $\sum_{n=1}^{\infty} \frac{9^{n}}{3+10^{n}}$
c) $\sum_{n=1}^{\infty} \frac{6^{n}}{-4+5^{n}}$
d) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{-4+5^{n}}$
8. For each series, what does the limit comparison test tell us? [not applicable, converge, or diverge] Show your work.
(a) $\sum_{n=1}^{\infty} \frac{1}{2 n+1}$
b) $\sum_{n=1}^{\infty} \frac{n+2}{(n+1)^{3}}$
c) $\sum_{n=1}^{\infty} \frac{2^{n}}{5^{n}-n}$
9. For each series, use the alternating series test or the limit test for divergence to decide: [converge, or diverge]. Show your work.
a) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\ln (n+1)}$
b) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n+1}$
c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{e^{-n}}$
10. Decide if the sums converge or diverge, explain why. If there is a formula for the sum, find the value.
a) $\sum_{n=1}^{\infty} n^{2} e^{-n^{3}}$
b) $\sum_{n=1}^{\infty} e^{2 n}$
c) $\sum_{n=1}^{\infty} \frac{2^{n}}{e^{3 n}}$
11. For each series, what does the ratio test tell us? [converge absolutely, diverge, or inconclusive]. Show your work by finding the limit.
(a) $\sum_{n=1}^{\infty} \frac{(-2)^{n}}{n!}$
(b) $\sum_{n=1}^{\infty} \frac{2^{\left(n^{2}\right)}}{(2 n)!}$
12. For each series, what does the root test tell us? [converge absolutely, diverge, or inconclusive]. Show your work by finding the limit.
(a) $\sum_{n=1}^{\infty}\left(\frac{-2 n}{3 n+1}\right)^{n}$
(b) $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}\right)^{n}$
13. For this power series, determine the radius of convergence.
$\sum_{n=1}^{\infty} \frac{2(x-3)^{n}}{n 5^{n}}$
14. For this power series, the radius of convergence is found to be $R=3$. Determine the interval of convergence. $\sum_{n=1}^{\infty} \frac{(x-2)^{n}}{n 3^{(n+1)}}$
15. For this power series, determine the interval of convergence.
$\sum_{n=1}^{\infty} \frac{5^{n} x^{n}}{1+2^{n}}$
16. Also study the quizzes, and the homework questions. These are good test questions too!

