Calculus I. Test 3 (final) Review, answers.
Make sure you also study all the quizzes, old tests and old reviews!

1. Use the graphs shown for f and g to evaluate each function value or limit, or yes/no question, (or answer DNE).

a) $f(3)=? \quad 4$
b) $g(4)=? \quad 5$
c) $\lim _{x \rightarrow 3^{+}} f(x)=? \quad 4$
d) $\lim _{x \rightarrow 3} f(x)=? \quad$ DNE
e) Is $f^{\prime}(x)>0$ for $x=2 ? \quad$ yes
f) Is $f^{\prime}(x)>0$ for $4<x<5$? yes
g) Is $f^{\prime}(x)<0$ for $4<x<5$? no
h) Is there a c.p. at $g(4) ?$ yes Is there a c.p. at $f(4) ?$ yes
i) Is $f^{\prime}(x)=D N E$ at $x=3 ? \quad$ yes
j) Is $f(x)$ continuous at $x=3 ?$ no
k) Is $f^{\prime}(x)=D N E$ at $x=1 ?$ no
l) Is $f^{\prime \prime}(x)<0$ at $3<x<4$? no
m) Is $f^{\prime \prime}(x)>0$ at $x=4 ?$ yes
n) Is $g^{\prime}(x)>0$ for $1<x<3$? yes
2. Use the graphs shown for f to evaluate each function value or limit, or question, (or answer DNE).

a) In A, what are the two x-values where $f(x)=D N E$? 0 and 2
b) In A, which x-value is the point of inflection? $x=0$
c) In B, which x-value is the point of inflection? $x=0$
d) In A, what x-values have $y^{\prime}<0$ and $y^{\prime \prime}>0$? $2<x<6$
e) In C, what x-values have $f^{\prime}(x)<0$ and $f^{\prime \prime}(x)<0 ? \quad 2<x<6$
f) In A, which x-values has a c.p.? $\quad x=0$
g) In C there is a vertical asymptote. State the equation of that v.a. $\quad x=2$
h) In B there is a horizontal asymptote as x goes to ∞. The equation of that h.a. $y=2$
3. Find the length of one side of the maximum area rectangle made by using 50 ft of wire in the below circuit diagram 3 . Find x, use the second derivative test to check for max.
$x=25 / 12 . \quad A^{\prime \prime}(25 / 12)=-24(8 / 7)<0$
4. Find the minimum length of wire in the below circuit diagram 4, if the area of the rectangle is 10 . Find x, use the second derivative test to check for min.
$x=\sqrt{80 / 81} \quad L^{\prime \prime}=(160 / 9) x^{-3}>0$ when $x=\sqrt{80 / 81}$
5. Find the radius of the maximum volume open-top cylindrical can that uses 5 square feet of tin. See picture and formula below.
radius is $r=\sqrt{\frac{5}{3 \pi}}$
6.

4.

5) 3

$$
\begin{aligned}
& V=\pi r^{2} h \\
& S=2 \pi r h+\pi r^{2}
\end{aligned}
$$

6. Antiderivatives.
a) $\int\left(x^{4}+\sin x\right) d x$
$\frac{x^{5}}{5}-\cos x+c$
b) $\int\left(\frac{\sqrt{x}+1}{x}\right) d x$
$2 \sqrt{x}+\ln x+c$
c) $\int\left(\frac{2 e^{x}+1}{2}\right) d x$
$e^{x}+\frac{x}{2}+c$
d) $\int\left(3^{x}+1\right) d x$
$x+\frac{3^{x}}{\ln 3}+c$
e) $\int\left(\cos x-\sec ^{2} x\right) d x$
$\sin x-\tan x+c$
7. Definite Integrals
a) Find the definite integral: $\int_{0}^{\pi} \sin x \cos ^{3} x d x$.

0
b) Find the area under the curve $y=x \sqrt{9+x^{2}}$ from $x=0$ to $x=4$.
$\frac{98}{3}$
c) Find the area under the curve $y=2^{x} \sqrt{8+2^{x}}$ from $x=0$ to $x=3$.
$\frac{74}{3 \ln 2}$
d) Find the definite integral: $\int_{1}^{2} x \sqrt{x+1} d x$.
$(-4 / 15)(\sqrt{2}-6 \sqrt{3})=2.3942$

