Symmetric Traveling Salesman

Polytope and problem

1) Problem

- Given: a set of cities and the symmetric distances (or costs) between each pair.
- A tour visits each city once and returns to the start.
- Find the tour with minimal total distance (cost).
- We can safely assume that the distances form a metric, obeying the triangle inequality.

2) Model and 3) Example

- The n cities and distances are modeled as a complete graph K_{n} with weighted edges.
- A tour is a Hamiltonian cycle c, and its total distance p is the sum of its weights.
Example $n=5$:

An example tour is $c=1,3,4,2,5,1$. It's total distance is $p=6.3$.

4) Polytope

- Our vertices $\boldsymbol{x}(c)$ correspond to Hamiltonian cycles c of the graph K_{n}. They have $\binom{n}{2}$ components, one for each edge.
- The component for edge $\{i, j\}$ is $x_{i j}=1$ if the edge is in the cycle; $x_{i j}=0$ if not.
- Our objective function $p=\boldsymbol{d} \cdot x(c)$ outputs total distance. The vector \boldsymbol{d} has components the given edge weights.

5) Example

$$
d=<1.1,1.1,2,1,2.2,2.1,1.1,1,2,1>
$$

Vertices:
c

$$
\boldsymbol{x}(c)
$$

$$
\begin{aligned}
& p=\boldsymbol{d} \cdot \boldsymbol{x}(c) \\
& p=6.3
\end{aligned}
$$

1,2,3,5,4,1
1,2,4,3,5,1
1,2,4,5,3,1
1,2,5,3,4,1
1,2,5,4,3,1
1,3,2,4,5,1
1,3,2,5,4,1
1,4,2,3,5,1
1,4,2,5,3,1
1,5,2,3,4,1
1,5,2,4,3,1

6) Known Facts

Dimensions:
$0,2,5,9,14 \ldots n(n-3) / 2$

- Numbers of vertices in nth polytope:
$1,3,12,60, \ldots(n-1)!/ 2$
- Numbers of Facets:
$0,3,20,100,3437,194187,42104442$, ...
Source:
https://www.zib.de/groetschel/pubnew/paper/groetschelpadberg1979a.pdf

7) Greedy Algorithm

- Pick a starting city; choose the edge with least weight; repeat (don't return to any city twice until the last step.)

The greedy algorithm starting at node 1 gives the cycle $c=1,5,4,3,2,1$ with total distance $p=6.3$.

8) LP

 using http://www.zweigmedia.com/RealWorld/simplex.htmlMinimize $p=1.1 \mathrm{x}_{12}+1.1 \mathrm{x}_{13}+2 \mathrm{x}_{14}+1 \mathrm{x}_{15}+2.2 \mathrm{x}_{23}+2.1 \mathrm{x}_{24}+1.1 \mathrm{x}_{25}+1 \mathrm{x}_{34}+2 \mathrm{x}_{35}+1 \mathrm{x}_{45}$ subject to
$\mathrm{x}_{12}+\mathrm{x}_{13}+\mathrm{x}_{14}+\mathrm{x}_{15}=2$
$\mathrm{x}_{12}+\mathrm{x}_{23}+\mathrm{x}_{24}+\mathrm{x}_{25}=2$
$\mathrm{x}_{23}+\mathrm{x}_{13}+\mathrm{x}_{34}+\mathrm{x}_{35}=2$
$\mathrm{x}_{24}+\mathrm{x}_{34}+\mathrm{x}_{14}+\mathrm{x}_{45}=2$
$\mathrm{x}_{15}+\mathrm{x}_{25}+\mathrm{x}_{35}+\mathrm{x}_{45}=2$
$\mathrm{x}_{12}>=0$
$\mathrm{x}_{13}>=0$
$\mathrm{x}_{14}>=0$
$\mathrm{x}_{15}>=0$
$\mathrm{x}_{23}>=0$
$\mathrm{x}_{24}>=0$
$\mathrm{x}_{25}>=0$
$\mathrm{x}_{34}>=0$
$\mathrm{x}_{35}>=0$
$\mathrm{x}_{45}>=0$
$\mathrm{x}_{12}<=1$
$\mathrm{x}_{13}<=1$
$\mathrm{x}_{14}<=1$
$\mathrm{x}_{15}<=1$
$\mathrm{x}_{23}<=1$
$\mathrm{x}_{24}<=1$
$\mathrm{x}_{25}<=1$
$\mathrm{x}_{34}<=1$
$\mathrm{x}_{35}<=1$
$\mathrm{x}_{45}<=1$
Optimal Solution: $p=5.3 ; x_{12}=1, x_{13}=1, x_{14}=0, x_{15}=0, x_{23}=0, x_{24}=0, x_{25}=1, x_{34}=1, x_{35}=0, x_{45}=1$
[That's the vertex vector $\boldsymbol{x}(c)=\langle 1,1,0,0,0,0,1,1,0,1\rangle$ which is the cycle $c=1,2,5,4,3,1$]
[Note: You can cut and paste the above into the link given at the top and see the steps of the simplex method with the Dantzig rule.]

