The Permutahedron

a) The face poset

- Elements of the face poset are ordered partitions of $[n]=\{1,2,3, \ldots, n\}$.

a) The face poset

- Elements of the face poset are ordered partitions of $[n]=\{1,2,3, \ldots, n\}$.
- Face ordering (order in the face poset) is given by refinement: a finer partition is less than a courser partition (if the overall ordering is respected).

a) The face poset

- Elements of the face poset are ordered partitions of $[n]=\{1,2,3, \ldots, n\}$.
- Face ordering (order in the face poset) is given by refinement: a finer partition is less than a courser partition (if the overall ordering is respected).
- Example for $n=5$: $(\{4\},\{2\},\{1,3\},\{5\})<(\{2,4\},\{1,3\},\{5\})<(\{2,4\},\{1,3,5\})$

a) The face poset

- Elements of the face poset are ordered partitions of $[n]=\{1,2,3, \ldots, n\}$.
- Face ordering (order in the face poset) is given by refinement: a finer partition is less than a courser partition (if the overall ordering is respected).
- Example for $n=5$:

$$
(\{4\},\{2\},\{1,3\},\{5\})<(\{2,4\},\{1,3\},\{5\})<(\{2,4\},\{1,3,5\})
$$

- The vertices of the polytope are the least items, which are the finest partitions, such as $(\{4\},\{2\},\{3\},\{1\},\{5\})$. These correspond to permutations.

b) Labeled permutahedron for $n=3$

c) Permutahedron with vertex values

- Each vertex corresponds to a permutation.
- Example for $n=4$: (\{4\},\{2\},\{1\},\{3\}) corresponds to:

- The vertex coordinates are found by just listing the outputs of the permutation: $(4,2,1,3)$ as a point in \mathbf{R}^{4}.

c) cont. Example in dimension 3.

d) Known facts

- Dimensions:
$0,1,2,3, \ldots n-1$
- Numbers of vertices in nth polytope:

1, 2, 6, 24, 120, ... n! [OEIS A000142]

- Facets:
$0,2,6,14,30 \ldots 2^{n}-2$ [OEIS A000918]
- f-vectors:
$1,2,1,6,6,1,24,36,14,1, \ldots$ [OEIS A019538]

e) Skeleton lattice

The permutations of [n] are ordered. We say a permutation is less than another if you can get to the other by composing with a series of transpositions.
Example on $n=4$: $(4,2,1,3)<(4,3,1,2)$ sinct
$(4,2,1,3)$

Transpose $(2,3)$

$$
=(4,3,1,2)
$$

Hasse Diagram
for $n=4$.

f) Space tiling

- The n -dimensional permutahedron tiles n dimensional space. In 3d, it is one of only 5 polytopes that can tile 3d space with translated ("slid over") copies of itself.

