Faces of Balanced Minimal Evolution Polytopes and Linear Programming.

Stefan Forcey, Logan Keefe, William Sands. U. Akron. Satyan Devadoss. U. San Diego

Q1: Split faces; split facets.

 $d = \langle 6, 8, 9, 12, 7, 15 \rangle$

 $x(t) = 2^{(n-2-l_{ii})}$

$$t \qquad x(t)_{y} = 2^{1} \qquad d \cdot x(t)$$

$$\downarrow \qquad t \qquad x(t) \qquad d \cdot x(t)$$

$$\downarrow \qquad \downarrow \qquad 4 \qquad \langle 6, 8, 9, 12, 7, 15 \rangle \qquad 78$$

$$\downarrow \qquad 2 \qquad \langle 1, 2, 1, 1, 2, 1 \rangle \qquad 72$$

$$\downarrow \qquad \downarrow \qquad 2 \qquad \langle 1, 1, 2, 2, 1, 1 \rangle \qquad 78$$

The Balanced minimal evolution polytope \mathcal{P}_4 .

A1. any set of compatible splits.

A1. any set of compatible splits.

A1. Intersecting cherry splits

A1: Cyclic splits for n = 5

A1: Four split networks.

A1: Nearest Neighbor Interchange.

A1: Clade face

Question 2. If we use branch and bound to optimize on the region bounded by split faces of the BME polytope, are we guaranteed to get a valid tree? (2 + 4)(3 + 4

Split faces; split facets.

Features of the BME polytope \mathcal{P}_n

number	dim.	vertices	facets	facet inequalities	number of	number of
of	of \mathcal{P}_n	of \mathcal{P}_n	of \mathcal{P}_n	(classification)	facets	vertices
species						in facet
3	0	1	0	-	-	-
4	2	3	3	$x_{ab} \ge 1$	3	2
				$x_{ab} + x_{bc} - x_{ac} \le 2$	3	2
5	5	15	52	$x_{ab} \ge 1$	10	6
				(caterpillar)		
				$x_{ab} + x_{bc} - x_{ac} \le 4$	30	6
				(intersecting-cherry)		
				$x_{ab} + x_{bc} + x_{cd} + x_{df} + x_{fa} \le 13$	12	5
				(cyclic ordering)		
6	9	105	90262	$x_{ab} \ge 1$	15	24
				(caterpillar)		
				$x_{ab} + x_{bc} - x_{ac} \le 8$	60	30
				(intersecting-cherry)	10	
				$x_{ab} + x_{bc} + x_{ac} \le 10$	10	9
<u> </u>				(3,3)-split		
n	$\binom{n}{2} - n$	(2n – 5)!!	?	$x_{ab} \ge 1$	(ⁿ ₂)	(n – 2)!
				(caterpillar)		
				$x_{ab} + x_{bc} - x_{ac} < 2^{n-3}$	$\binom{n}{2}(n-2)$	2(2n-7)!!
				(intersecting-cherry)	(2) ()	
				$x_{ab} + x_{bc} + x_{ac} < 2^{n-2}$	$\binom{n}{2}$	3(2n-9)!!
				$(m, 3)$ -split, $m \ge 3$	3	
				$\sum_{S} x_{ij} \le (m-1)2^{n-3}$	$2^{n-1} - \binom{n}{2}$	(2(n-m)-3)!!
				(m, n - m)-split S,	-n - 1	$\times (2m - 3)!!$
				m > 2, n > 5		
						

- We tested up to n = 10, with and without noise.
- Results are completely accurate...
- We need to find a way to break it! MatLab code available: http:

//www.math.uakron.edu/~sf34/class_home/research.htm

polytope > print \$p->VERTICES;

- 12222114411
- 12222141141
- 1 4/3 8/3 8/3 4/3 8/3 4/3 8/3 4/3 4/3 8/3
- 1 4/3 8/3 8/3 4/3 4/3 8/3 8/3 4/3 8/3 4/3
- 14112112422
- 1 8/3 4/3 4/3 8/3 8/3 4/3 4/3 8/3 4/3 8/3 1 8/3 4/3 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 1 2 2 2 2 4 1 1 1 1 4
- 1 8/3 8/3 4/3 4/3 4/3 8/3 4/3 4/3 8/3 8/3 1 8/3 8/3 4/3 4/3 4/3 4/3 8/3 8/3 4/3 8/3
- 12411222114
- 1 4/3 4/3 8/3 8/3 8/3 4/3 8/3 8/3 4/3 4/3
- 1 4/3 8/3 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3

polytope > print \$p->VERTICES;

```
11214241221
```

- 11241214221
- 11421124212
- 11124421212
- 1112772121
- 1 1 1 4 2 4 1 2 1 2 2
- 11412142122
- 12141222141

1 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 8/3 4/3

12114222411

1 4/3 4/3 8/3 8/3 8/3 8/3 4/3 4/3 4/3 8/3 4/3 1 4/3 8/3 4/3 8/3 8/3 8/3 8/3 4/3 4/3 4/3 8/3 1 4 1 2 1 1 2 1 2 4 2

14211211224

1 8/3 4/3 4/3 8/3 4/3 8/3 4/3 8/3 8/3 4/3

$1\,2\,2\,2\,2\,1\,1\,4\,4\,1\,1$

12222141141

- 1 4/3 8/3 8/3 4/3 8/3 4/3 8/3 4/3 8/3
- 1 4/3 8/3 8/3 4/3 4/3 8/3 8/3 4/3 8/3 4/3 1 4 1 1 2 1 1 2 4 2 2

1 8/3 4/3 4/3 8/3 8/3 4/3 4/3 8/3 4/3 8/3 1 8/3 4/3 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 1 2 2 2 2 4 1 1 1 1 4

1 8/3 8/3 4/3 4/3 4/3 8/3 4/3 4/3 8/3 8/3 1 8/3 8/3 4/3 4/3 4/3 4/3 8/3 8/3 4/3 8/3 1 2 4 1 1 2 2 2 1 1 4

12411222114

1 4/3 4/3 8/3 8/3 8/3 4/3 8/3 8/3 4/3 4/3 1 4/3 8/3 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3 Questions and comments?

Advertisement: http://www.math.uakron.edu/~sf34/hedra.htm