Using 5 dimensions to identify a first cousin once
removed.

S. Forcey, U. Akron.
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The Balanced minimal evolution method: ex. tree metric.

Definition: A phylogenetic tree, hereafter tree, is a

tree with labeled leaves, unlabeled vertices of degree 3 or larger,
and without degree 2 vertices. A rooted tree has a

distinguished leaf.



The Balanced minimal evolution method: ex. tree metric.
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The Balanced minimal evolution method: ex. tree metric.

0O 6 8 9
6 0 12 7
8 12 0 15
9 7 15 O

d=<6,8,9,12,7,15>

Now: if we are given d, (experiment, measurement), can we
recover the original tree?



The Balanced minimal evolution method: ex. tree metric.
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The Balanced minimal evolution method: ex. tree metric.

x(t); =201
x(?) d-x(1)
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The Balanced minimal evolution method: ex. tree metric.

x(t)y = 20 1p)

Givend = (6, 8,9, 12,7, 15), find the tree whose branches
may be assigned lengths to achieve those distances.

t x(?) d-x(1)
2,1,1,1,1,2) 78
©) O,

(1,2,1,1,2,1) 72
©, @
(1,1,2,2,1,1) 78
@ ©),



The Balanced minimal evolution method: ex. tree metric.
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Theorems

1) The BME method gives the unique tree if d is a tree metric. (L.
Pauplin, 2000)

2) The BME method is statistically consistent (R. Desper, O.
Gascuel, 2004.)

3) The BME vectors x(t) are the vertices of a polytope sequence
which exhibits some recursion: subsequent terms have faces
equivalent to prior terms. (D. Haws, T. Hodges, R. Yoshida, L.
Pachter, P. Huggins, K. Eickmeyer, 2008.)

4) The BME problem is NP-hard, even when restricted to metric
instances. (S. Fiorini, G. Joret, 2012.)



The Balanced minimal evolution polytope Pj.
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Statistics.

e Dimensions (start n =3): 0,2,5,9, 14('2’) —-n

n
vertices x(t) obey Zx,-j =2"2forj=1,...,n
por
e Number of Vertices in n* polytope: 1,3,15,105,...(2n — 5)!!
e Number of Facets: 0, 3,52,90262... OPEN
o f-vectors: 1,3,3, 1,15, 105, 250, 210,52, 1, 105, 5460...



The Balanced minimal evolution polytope Ps.

Q 9
t= ®

@ ©
An=(1,4,1,2,1,4,2,1,2,2)

t= @

@ ®
«n=(1,4,2,1,1,2,4,2,1,2)

{(4,1,1,2,1,1,2,4.2.2)

(4,2,1,1,2,1,1,2,2,4)
(4,1,2,1,1,2,1,2,4,2)
(2,1,4,1,2,2,2,1,4,1)
(2,2,2,2,1,4,1,1,4,1)
(1,4,1,2,1,4,2,1,2,2)
(1,2,1,4,2,4,1,2,2,1)
2,1,1,42,2,2,4,1,1)
(1,1,2,4,4,2,1,2,1,2)
(1,1,4,2,4,1,2,1,2,2)
(2,2,2,2,4,1,1,1,1,4)
(2,4,1,1,2,2,2,1,1,4)
(1,4,2,1,1,2,4,2,1,2)
(1,2,4,1,2,1,4,2,2,1)
(2,2,2,2,1,1,44,1,1)}

7= (15.105,250,210, 52, 1)

Figure: Two sample vertex trees of Ps with their respective coordinates
shown beneath, followed by all 15 vertex points calculated for n=5, and
the f-vector for Ps as found by polymake.



The Balanced minimal evolution polytope Ps.
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Definitions.

e A clade is a sub-tree of a phylogenetic tree which is a connected
component after deleting a single interior edge. (It contains all the
leaves of a single ancestor, for rooted trees).

e A cherry is a clade with only two leaves.

e A pair of intersecting cherries {a, b} and {b, c} have intersection
in one leaf b, and thus cannot exist both on the same tree.

e A caterpillar is a tree with only two cherries.

o A split of the set of n leaves for our phylogenetic trees is a
partition of the leaves into two parts, one part called S with m
leaves and another with the remaining n — m leaves. A tree
displays a split if each part makes up the leaves of a clade.

e A tubeis a connected subgraph. A clade is a specialized tube. A
tubing is a set of nested or disconnected tubes. Any set of clades
on a rooted tree form a tubing.



Definitions.




Clade face: K. Eickmeyer et al.




Intersecting cherries facet: x,p + Xpc — Xz < 8.




Caterpillar facet: x;, > 1.
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Figure: On the left is a facet of Ps with each vertex labeled by the
caterpillar tree. On the right is the Birkhoff polytope B(3) with vertices
labeled by the corresponding permutation matrices.
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Theorem

Let t be a phylogenetic tree with n > 5 leaves which has exactly
two nodes v and i, with degrees both larger than 3. Then the trees
which refine t are the vertices of a facet of the BME polytope P,,.



Split faces; split facets.
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Split faces; split facets.

Question. If we use branch and bound to optimize
on the region bounded by split faces of the BME polytope,

are we guaranteed to get a valid tree?
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Splitohedron.

S,

E 255 < (m— 1)2n 3
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Theorem: the Splitohedron is a bounded polytope that is a
relaxation of the BME polytope.

Proof: The split-faces include the cherries where the inequality is
xjj < 273 and the caterpillar facets have the inequality x; > 1,
thus the resulting intersection of halfspaces is a bounded polytope
since it is inside the hypercube [1,2"*3](2).



Features

of the BME polytope P,

number | dim. vertices | facets facet inequalities number of number of
of of Py of P, of Py (classification) facets vertices
species in facet
3 0 1 0 - - -
7 2 3 3 Xop > 1 3 2
Xab + Xpe — Xac £ 2 3 2
5 5 15 52 Xab > 1 10 6
(caterpillar)
Xab + Xbe — Xac < 4 30 6
(intersecting-cherry)
Xab + Xbe + Xed + Xdf + X2 < 13 12 5
(cyclic ordering)
6 9 105 90262 Xap > 1 15 24
(caterpillar)
Xab + Xbe — Xac < 8 60 30
(intersecting-cherry)
Xab + Xbe + Xac < 16 10 9
(3.3)-split
n 5) —n| (2n—5) ? Xap > 1 (5) (n—2)!
(caterpillar)
Xab + Xpe — Xac <2773 | (5)(n—2) 2(2n — 7\
(intersecting-cherry)
Xab + Xpe + Xae < 2072 (3) 3(2n —9)!!
(m, 3)-split, m >3
Sor < (m-127 |27 = (3) | (2n—m) - )1
(m,n— m)-split S, —n—1 x(2m —3)1
m>2n>5




Splitohedron.

polytope > print $p->VERTICES;

11214241221
11241214221
11421124212
11124421212
11142412122
11412142122
12141222141
18/34/38/34/34/34/38/38/38/34/3
12114222411
14/34/38/38/38/38/34/34/38/34/3
14/38/34/38/38/38/34/34/34/38/3
14121121242
14211211224
18/34/34/38/34/38/34/38/38/34/3

12222114411
12222141141
14/38/38/34/38/34/38/34/34/38/3
14/38/38/34/34/38/38/34/38/34/3
14112112422
18/34/34/38/38/34/34/38/34/38/3
18/34/38/34/38/34/34/34/38/38/3
12222411114
18/38/34/34/34/38/34/34/38/38/3
18/38/34/34/34/34/38/38/34/38/3
12411222114
14/34/38/38/38/34/38/38/34/34/3
14/38/34/38/34/38/38/38/34/34/3



Splitohedron.

polytope > print $p->VERTICES;

18/34/38/34/34/34/38/38/38/34/3

14/34/38/38/38/38/34/34/38/34/3
14/38/34/38/38/38/34/34/34/38/3

18/34/34/38/34/38/34/38/38/34/3

14/38/38/34/38/34/38/34/34/38/3
14/38/38/34/34/38/38/34/38/34/3

18/34/34/38/38/34/34/38/34/38/3
18/34/38/34/38/34/34/34/38/38/3

18/38/34/34/34/38/34/34/38/38/3
18/38/34/34/34/34/38/38/34/38/3

14/34/38/38/38/34/38/38/34/34/3
14/38/34/38/34/38/38/38/34/34/3



BnB.




A2: So far so good!

e We tested up to n = 10, with and without noise.
e Results are completely accurate...
e We need to find a way to break it! MatLab code available: http:

//www.math.uakron.edu/ " sf34/class_home/research.htm


http://www.math.uakron.edu/~sf34/class_home/research.htm�
http://www.math.uakron.edu/~sf34/class_home/research.htm�

More polytopes.

For any circular split system S, x(S) is a vector whose
ijj-component is the number of circular orderings consistent with
that system for which i and j are adjacent.

n

These vertices x(t) obey Zx,-j =2kl forj=1,...,n
i=1
i

where k is the number of bridges in the diagram.



Split network vectors.

o a9 o
2,1,1,1,1,2 1,4,1,2,1,4,2,1,2,2

[ a,0,1,1,0,1)

4,2,1,0,1,2,1,0,1,2,0,2,4,0,4) (2,0,1,0,1,2,0,0,0,1,0,1,2,0,2)
Notes: Agrees with previous x(t). Gives TSP when there are no
bridges.



Split network vectors.

®) @ 090
2,1,1,1,1,2 1,4,1,2,1,4,2,1,2,2
;;>——€; 2 1,1,1,1,2) o © ( )

©
©

[ @.0.1,1,0,1)
@ ©)

(4,2,1,0,1,2,1,0,1,2,0,2,4,0,4) 2,0,1,0,1,2,0,0,0,1,0,1,2,0,2)

Notes: Agrees with previous x(t). Gives TSP when there are no
bridges.



A filtration of split networks.

Definition. Let BME(n, k) be the convex hull of the split network
vectors for the split networks having n leaves and k bridges.

Idea: a split network distance vector d (seen as a linear functional)
from a split network (with edge lengths) and j > k bridges will be
simultaneously minimized at the vertices of BME(n, k) which
correspond to the cycles which d resolves.



A filtration of split networks.

Specifically: A tree metric d (as linear functional) is minimized
simultaneously at the vertices of the TSP which correspond to the
cycles with which d is compatible



A filtration of split networks.

S x(S) d-x(S)
2 4
<0,1,1,1,1,0) 36
3 1 <6,8,9,12,7,15> QO
& ©
2 3

<1,0,1,1,0,1) 42

{1,1,0,0,1,1 36




Or...

We might propose an extension of the BME polytope which is the
the convex hull of all vectors n(S) for binary split systems S on a
set of size n.

This new polytope has vertices corresponding to all the binary split
systems.

These binary split systems come in two varieties: the binary
phylogenetic trees and the split systems for which any split is
incompatible with at most one other split.



Next.
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Next.
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Thanks so much!



