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Trees

Episodic radiations in the fly tree of life, Wiegmann et.al. PNAS 2011
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The Balanced minimal evolution method: ex. tree metric.
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De�nition: A phylogenetic tree, hereafter tree, is a

tree with labeled leaves, unlabeled vertices of degree 3 or larger,

and without degree 2 vertices. A rooted tree has a

distinguished leaf.



The Balanced minimal evolution method: ex. tree metric.
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The Balanced minimal evolution method: ex. tree metric.
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d =    6, 8, 9, 12, 7, 15<                            >

0       6        8        9
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8       12      0      15

9        7      15       0

     
[             ]

Now: if we are given d, (experiment, measurement), can we
recover the original tree?



The Balanced minimal evolution method: ex. tree metric.
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The Balanced minimal evolution method: ex. tree metric.

x(t)ij = 2(n−1−pij )
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The Balanced minimal evolution method: ex. tree metric.

x(t)ij = 2(n−1−pij )
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Given d =  (6, 8, 9, 12, 7, 15), find the tree whose branches 

may be assigned lengths to achieve those distances. 



The Balanced minimal evolution method: ex. tree metric.
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Theorems

1) The BME method gives the unique tree if d is a tree metric. (L.
Pauplin, 2000)

2) The BME method is statistically consistent (R. Desper, O.
Gascuel, 2004.)

3) The BME vectors x(t) are the vertices of a polytope sequence
which exhibits some recursion: subsequent terms have faces
equivalent to prior terms. (D. Haws, T. Hodges, R. Yoshida, L.
Pachter, P. Huggins, K. Eickmeyer, 2008.)

4) The BME problem is NP-hard, even when restricted to metric
instances. (S. Fiorini, G. Joret, 2012.)



The Balanced minimal evolution polytope P4.
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Statistics.

• Dimensions (start n =3): 0, 2, 5, 9, 14...
(n

2

)− n

vertices x(t) obey
n∑

i=1
i 6=j

xij = 2n−2 for j = 1, . . . , n

• Number of Vertices in nth polytope: 1, 3, 15, 105, ...(2n − 5)!!
• Number of Facets: 0, 3, 52, 90262... OPEN
• f -vectors: 1, 3, 3, 1, 15, 105, 250, 210, 52, 1, 105, 5460...



The Balanced minimal evolution polytope P5.
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c(t) = (1, 4, 1, 2, 1, 4, 2, 1, 2, 2)

{(4,1,1,2,1,1,2,4,2,2)

  (4,2,1,1,2,1,1,2,2,4)

  (4,1,2,1,1,2,1,2,4,2)

  (2,1,4,1,2,2,2,1,4,1)

  (2,2,2,2,1,4,1,1,4,1)

  (1,4,1,2,1,4,2,1,2,2)

  (1,2,1,4,2,4,1,2,2,1)

  (2,1,1,4,2,2,2,4,1,1)

15, 105, 250, 210, 52, 1

(1,1,2,4,4,2,1,2,1,2)

(1,1,4,2,4,1,2,1,2,2)

(2,2,2,2,4,1,1,1,1,4)

(2,4,1,1,2,2,2,1,1,4)

(1,4,2,1,1,2,4,2,1,2)

(1,2,4,1,2,1,4,2,2,1)

(2,2,2,2,1,1,4,4,1,1)}

<                                      >

t = 

f = 

1

2 5

4

3

c(t) = (1, 4, 2, 1, 1, 2, 4, 2, 1, 2)

t = 

Figure: Two sample vertex trees of P5 with their respective coordinates
shown beneath, followed by all 15 vertex points calculated for n=5, and
the f -vector for P5 as found by polymake.



The Balanced minimal evolution polytope P5.

Figure: Fifty-two four-dimensional facets.



Definitions.

• A clade is a sub-tree of a phylogenetic tree which is a connected
component after deleting a single interior edge. (It contains all the
leaves of a single ancestor, for rooted trees).
• A cherry is a clade with only two leaves.
• A pair of intersecting cherries {a, b} and {b, c} have intersection
in one leaf b, and thus cannot exist both on the same tree.
• A caterpillar is a tree with only two cherries.
• A split of the set of n leaves for our phylogenetic trees is a
partition of the leaves into two parts, one part called S with m
leaves and another with the remaining n −m leaves. A tree
displays a split if each part makes up the leaves of a clade.
• A tube is a connected subgraph. A clade is a specialized tube. A
tubing is a set of nested or disconnected tubes. Any set of clades
on a rooted tree form a tubing.



Definitions.
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Clade face: K. Eickmeyer et al.
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Intersecting cherries facet: xab + xbc − xac ≤ 8.
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Caterpillar facet: xab ≥ 1.
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Figure: On the left is a facet of P5 with each vertex labeled by the
caterpillar tree. On the right is the Birkhoff polytope B(3) with vertices
labeled by the corresponding permutation matrices.



Intersection.
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Theorem
Let t be a phylogenetic tree with n > 5 leaves which has exactly
two nodes ν and µ, with degrees both larger than 3. Then the trees
which refine t are the vertices of a facet of the BME polytope Pn.



Split faces; split facets.



Split faces; split facets.

Question. If we use branch and bound to optimize
on the region bounded by split faces of the BME polytope,

are we guaranteed to get a valid tree?



Splitohedron.

Theorem: the Splitohedron is a bounded polytope that is a
relaxation of the BME polytope.

Proof: The split-faces include the cherries where the inequality is
xij ≤ 2n−3, and the caterpillar facets have the inequality xij ≥ 1,

thus the resulting intersection of halfspaces is a bounded polytope

since it is inside the hypercube [1, 2n−3](
n
2).



Features of the BME polytope Pn

number dim. vertices facets facet inequalities number of number of
of of Pn of Pn of Pn (classification) facets vertices

species in facet

3 0 1 0 - - -

4 2 3 3 xab ≥ 1 3 2
xab + xbc − xac ≤ 2 3 2

5 5 15 52 xab ≥ 1 10 6
(caterpillar)

xab + xbc − xac ≤ 4 30 6
(intersecting-cherry)

xab + xbc + xcd + xdf + xfa ≤ 13 12 5
(cyclic ordering)

6 9 105 90262 xab ≥ 1 15 24
(caterpillar)

xab + xbc − xac ≤ 8 60 30
(intersecting-cherry)
xab + xbc + xac ≤ 16 10 9

(3, 3)-split

n
(n

2

)− n (2n − 5)!! ? xab ≥ 1
(n

2

)
(n − 2)!

(caterpillar)

xab + xbc − xac ≤ 2n−3
(n

2

)
(n − 2) 2(2n − 7)!!

(intersecting-cherry)

xab + xbc + xac ≤ 2n−2
(n

3

)
3(2n − 9)!!

(m, 3)-split, m ≥ 3∑
S xij ≤ (m − 1)2n−3 2n−1 − (n

2

)
(2(n −m)− 3)!!

(m, n −m)-split S , −n − 1 ×(2m − 3)!!
m > 2, n > 5



Splitohedron.

polytope > print $p->VERTICES;

1 1 2 1 4 2 4 1 2 2 1

1 1 2 4 1 2 1 4 2 2 1

1 1 4 2 1 1 2 4 2 1 2

1 1 1 2 4 4 2 1 2 1 2

1 1 1 4 2 4 1 2 1 2 2

1 1 4 1 2 1 4 2 1 2 2

1 2 1 4 1 2 2 2 1 4 1

1 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 8/3 4/3

1 2 1 1 4 2 2 2 4 1 1

1 4/3 4/3 8/3 8/3 8/3 8/3 4/3 4/3 8/3 4/3

1 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3 4/3 8/3

1 4 1 2 1 1 2 1 2 4 2

1 4 2 1 1 2 1 1 2 2 4

1 8/3 4/3 4/3 8/3 4/3 8/3 4/3 8/3 8/3 4/3

1 2 2 2 2 1 1 4 4 1 1

1 2 2 2 2 1 4 1 1 4 1

1 4/3 8/3 8/3 4/3 8/3 4/3 8/3 4/3 4/3 8/3

1 4/3 8/3 8/3 4/3 4/3 8/3 8/3 4/3 8/3 4/3

1 4 1 1 2 1 1 2 4 2 2

1 8/3 4/3 4/3 8/3 8/3 4/3 4/3 8/3 4/3 8/3

1 8/3 4/3 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3

1 2 2 2 2 4 1 1 1 1 4

1 8/3 8/3 4/3 4/3 4/3 8/3 4/3 4/3 8/3 8/3

1 8/3 8/3 4/3 4/3 4/3 4/3 8/3 8/3 4/3 8/3

1 2 4 1 1 2 2 2 1 1 4

1 4/3 4/3 8/3 8/3 8/3 4/3 8/3 8/3 4/3 4/3

1 4/3 8/3 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3



Splitohedron.

polytope > print $p->VERTICES;

1 1 2 1 4 2 4 1 2 2 1

1 1 2 4 1 2 1 4 2 2 1

1 1 4 2 1 1 2 4 2 1 2

1 1 1 2 4 4 2 1 2 1 2

1 1 1 4 2 4 1 2 1 2 2

1 1 4 1 2 1 4 2 1 2 2

1 2 1 4 1 2 2 2 1 4 1

1 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 8/3 4/3

1 2 1 1 4 2 2 2 4 1 1

1 4/3 4/3 8/3 8/3 8/3 8/3 4/3 4/3 8/3 4/3

1 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3 4/3 8/3

1 4 1 2 1 1 2 1 2 4 2

1 4 2 1 1 2 1 1 2 2 4

1 8/3 4/3 4/3 8/3 4/3 8/3 4/3 8/3 8/3 4/3

1 2 2 2 2 1 1 4 4 1 1

1 2 2 2 2 1 4 1 1 4 1

1 4/3 8/3 8/3 4/3 8/3 4/3 8/3 4/3 4/3 8/3

1 4/3 8/3 8/3 4/3 4/3 8/3 8/3 4/3 8/3 4/3

1 4 1 1 2 1 1 2 4 2 2

1 8/3 4/3 4/3 8/3 8/3 4/3 4/3 8/3 4/3 8/3

1 8/3 4/3 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3

1 2 2 2 2 4 1 1 1 1 4

1 8/3 8/3 4/3 4/3 4/3 8/3 4/3 4/3 8/3 8/3

1 8/3 8/3 4/3 4/3 4/3 4/3 8/3 8/3 4/3 8/3

1 2 4 1 1 2 2 2 1 1 4

1 4/3 4/3 8/3 8/3 8/3 4/3 8/3 8/3 4/3 4/3

1 4/3 8/3 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3



BnB.

2          4

<2                                              >4



A2: So far so good!

• We tested up to n = 10, with and without noise.

• Results are completely accurate...

• We need to find a way to break it! MatLab code available: http:

//www.math.uakron.edu/~sf34/class_home/research.htm

http://www.math.uakron.edu/~sf34/class_home/research.htm�
http://www.math.uakron.edu/~sf34/class_home/research.htm�


More polytopes.

For any circular split system S , x(S) is a vector whose
ij-component is the number of circular orderings consistent with
that system for which i and j are adjacent.

These vertices x(t) obey
n∑

i=1
i 6=j

xij = 2k+1 for j = 1, . . . , n

where k is the number of bridges in the diagram.



Split network vectors.
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(1, 4, 1, 2, 1, 4, 2, 1, 2, 2)

Notes: Agrees with previous x(t). Gives TSP when there are no
bridges.



Split network vectors.
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(1, 4, 1, 2, 1, 4, 2, 1, 2, 2)(2, 1, 1, 1, 1, 2) (1, 4, 1, 2, 1, 4, 2, 1, 2, 2)

(2, 1, 0, 1, 1, 0, 1, 2, 0, 2)

(2, 0, 1, 0, 1, 2, 0, 0, 0, 1, 0, 1, 2, 0, 2)(4, 2, 1, 0, 1, 2, 1, 0, 1, 2, 0, 2, 4, 0, 4)

(1, 0, 1, 1, 0, 1)

Notes: Agrees with previous x(t). Gives TSP when there are no
bridges.



A filtration of split networks.

Definition. Let BME(n, k) be the convex hull of the split network
vectors for the split networks having n leaves and k bridges.

Idea: a split network distance vector d (seen as a linear functional)
from a split network (with edge lengths) and j ≥ k bridges will be
simultaneously minimized at the vertices of BME(n, k) which
correspond to the cycles which d resolves.



A filtration of split networks.

Specifically: A tree metric d (as linear functional) is minimized
simultaneously at the vertices of the TSP which correspond to the

cycles with which d is compatible



A filtration of split networks.
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Or...

We might propose an extension of the BME polytope which is the
the convex hull of all vectors η(S) for binary split systems S on a
set of size n.
This new polytope has vertices corresponding to all the binary split
systems.
These binary split systems come in two varieties: the binary
phylogenetic trees and the split systems for which any split is
incompatible with at most one other split.



Next.
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(2, 1, 1, 1, 1, 2)
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(1, 1, 2, 2, 1, 1)
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(1, 1, 0, 0, 1, 1)

1

2 3
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(1, 0, 1, 1, 0, 1)

x + x + x + x + x + x = 8
12             13            14            23            24            34

x + x + x + x + x + x = 4
12             13            14            23            24            34

x + x  - x = 0
13             14           12      

x + x  - x = 2
12             23           13      



Next.
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[F., Keefe, Sands]
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Thanks so much!


