Using 5 dimensions to identify a first cousin once removed.

Family tree.

Family tree.

Episodic radiations in the fly tree of life, Wiegmann et.al. PNAS 2011

Premalatha Kalagara, CC BY-SA 4.0, https://commons.wikimedia.org/wiki/File/CeratophyliumSubmersum.jpg Josep Renalias, CC, https://commons.wikimedia.org/wiki/File/Magn%C3%B2lia_a_Verbania.JPG https://commons.wikimedia.org/wiki/File/Amborella_trichopoda_(3065968016)_fragment.jpg

Definition: A *phylogenetic tree*, hereafter *tree*, is a tree with labeled leaves, unlabeled vertices of degree 3 or larger, and without degree 2 vertices. A *rooted tree* has a distinguished leaf.

$d = \langle 6, 8, 9, 12, 7, 15 \rangle$

Now: if we are given *d*, (experiment, measurement), can we recover the original tree?

$$x(t)_{ij}=2^{(n-1-p_{ij})}$$

$$x(t)_{ij} = 2^{(n-1-p_{ij})}$$

Given d = (6, 8, 9, 12, 7, 15), find the tree whose branches may be assigned lengths to achieve those distances.

Theorems

1) The BME method gives the unique tree if **d** is a *tree metric*. (L. Pauplin, 2000)

2) The BME method is *statistically consistent* (R. Desper, O. Gascuel, 2004.)

3) The BME vectors $\mathbf{x}(t)$ are the vertices of a polytope sequence which exhibits some recursion: subsequent terms have faces equivalent to prior terms. (D. Haws, T. Hodges, R. Yoshida, L. Pachter, P. Huggins, K. Eickmeyer, 2008.)

4) The BME problem is NP-hard, even when restricted to metric instances. (S. Fiorini, G. Joret, 2012.)

The Balanced minimal evolution polytope \mathcal{P}_4 .

Statistics.

• Dimensions (start n = 3): 0, 2, 5, 9, 14... $\binom{n}{2} - n$

vertices
$$\mathbf{x}(t)$$
 obey $\sum_{i=1 \ i \neq j}^{n} x_{ij} = 2^{n-2}$ for $j = 1, \dots, n$

- Number of Vertices in *n*th polytope: 1, 3, 15, 105, ...(2*n* 5)!!
- Number of Facets: 0, 3, 52, 90262... OPEN
- *f*-vectors: 1, 3, 3, 1, 15, 105, 250, 210, 52, 1, 105, 5460...

The Balanced minimal evolution polytope \mathcal{P}_5 .

Figure: Two sample vertex trees of \mathcal{P}_5 with their respective coordinates shown beneath, followed by all 15 vertex points calculated for n=5, and the *f*-vector for \mathcal{P}_5 as found by polymake.

The Balanced minimal evolution polytope \mathcal{P}_5 .

Definitions.

• A *clade* is a sub-tree of a phylogenetic tree which is a connected component after deleting a single interior edge. (It contains all the leaves of a single ancestor, for rooted trees).

- A cherry is a clade with only two leaves.
- A pair of *intersecting cherries* $\{a, b\}$ and $\{b, c\}$ have intersection in one leaf *b*, and thus cannot exist both on the same tree.
- A caterpillar is a tree with only two cherries.

• A *split* of the set of *n* leaves for our phylogenetic trees is a partition of the leaves into two parts, one part called *S* with *m* leaves and another with the remaining n - m leaves. A tree *displays* a split if each part makes up the leaves of a *clade*.

• A *tube* is a connected subgraph. A clade is a specialized tube. A *tubing* is a set of nested or disconnected tubes. Any set of clades on a rooted tree form a tubing.

Definitions.

Clade face: K. Eickmeyer et al.

Intersecting cherries facet: $x_{ab} + x_{bc} - x_{ac} \le 8$.

Caterpillar facet: $x_{ab} \ge 1$.

Figure: On the left is a facet of \mathcal{P}_5 with each vertex labeled by the caterpillar tree. On the right is the Birkhoff polytope B(3) with vertices labeled by the corresponding permutation matrices.

Intersection.

Theorem

Let t be a phylogenetic tree with n > 5 leaves which has exactly two nodes ν and μ , with degrees both larger than 3. Then the trees which refine t are the vertices of a facet of the BME polytope \mathcal{P}_n .

Split faces; split facets.

Split faces; split facets.

Question. If we use branch and bound to optimize on the region bounded by split faces of the BME polytope, are we guaranteed to get a valid tree?

Splitohedron.

Theorem: the Splitohedron is a bounded polytope that is a relaxation of the BME polytope.

Proof: The split-faces include the cherries where the inequality is $x_{ij} \leq 2^{n-3}$, and the caterpillar facets have the inequality $x_{ij} \geq 1$, thus the resulting intersection of halfspaces is a bounded polytope since it is inside the hypercube $[1, 2^{n-3}]^{\binom{n}{2}}$.

Features of the BME polytope \mathcal{P}_n

number	dim.	vertices	facets	facet inequalities	number of	number of
of	of \mathcal{P}_n	of \mathcal{P}_n	of \mathcal{P}_n	(classification)	facets	vertices
species						in facet
3	0	1	0	-	-	-
4	2	3	3	$x_{ab} \ge 1$	3	2
				$x_{ab} + x_{bc} - x_{ac} \le 2$	3	2
5	5	15	52	$x_{ab} \ge 1$	10	6
				(caterpillar)		
				$x_{ab} + x_{bc} - x_{ac} \le 4$	30	6
				(intersecting-cherry)		
				$x_{ab} + x_{bc} + x_{cd} + x_{df} + x_{fa} \le 13$	12	5
				(cyclic ordering)		
6	9	105	90262	$x_{ab} \ge 1$	15	24
				(caterpillar)		
				$x_{ab} + x_{bc} - x_{ac} \le 8$	60	30
				(intersecting-cherry)		-
				$x_{ab} + x_{bc} + x_{ac} \le 16$	10	9
				(3,3)-split		
n	$\binom{n}{2} - n$	(2n - 5)!!	?	$x_{ab} \ge 1$	$\binom{n}{2}$	(n-2)!
	(2)			(caterpillar)	(2)	
				$x_{2h} + x_{hc} - x_{2c} \le 2^{n-3}$	$\binom{n}{2}(n-2)$	2(2n-7)!!
				(intersecting-cherry)	(2)(=)	-()
				$(\dots, \dots, n) = (\dots, n)$	(n)	2(2 n 0)11
				$x_{ab} + x_{bc} + x_{ac} \ge 2$	(3)	5(211 - 9)!!
				$(m, 3)$ -split, $m \ge 3$		
				$\sum_{S} x_{ij} \le (m-1)2^{n-3}$	$2^{n-1} - \binom{n}{2}$	(2(n-m)-3)!!
				(m, n - m)-split S,	-n - 1	$\times (2m - 3)!!$
				m > 2, n > 5		

Splitohedron.

polytope > print \$p->VERTICES;

11214241221 11241214221 11421124212 11124421212 11142412122 11412142122 12141222141 1 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 8/3 4/3 12114222411 1 4/3 4/3 8/3 8/3 8/3 8/3 4/3 4/3 8/3 4/3 1 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3 4/3 8/3 14121121242 14211211224

1 8/3 4/3 4/3 8/3 4/3 8/3 4/3 8/3 8/3 4/3

- 12222114411
- 12222141141
- 1 4/3 8/3 8/3 4/3 8/3 4/3 8/3 4/3 4/3 8/3
- 1 4/3 8/3 8/3 4/3 4/3 8/3 8/3 4/3 8/3 4/3
- 14112112422
- 1 8/3 4/3 4/3 8/3 8/3 4/3 4/3 8/3 4/3 8/3 1 8/3 4/3 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 12222411114
- 1 8/3 8/3 4/3 4/3 4/3 8/3 4/3 4/3 8/3 8/3 1 8/3 8/3 4/3 4/3 4/3 4/3 8/3 8/3 4/3 8/3 12411222114
- 1 4/3 4/3 8/3 8/3 8/3 4/3 8/3 8/3 4/3 4/3
- 1 4/3 8/3 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3

Splitohedron.

polytope > print \$p->VERTICES;

```
11214241221
```

- 11241214221
- 11421124212
- 11124421212
- 11142412122
- 11142412122
- 11412142122
- 12141222141

1 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 8/3 4/3

12114222411

1 4/3 4/3 8/3 8/3 8/3 8/3 4/3 4/3 8/3 4/3 1 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3 4/3 8/3 1 4 1 2 1 1 2 1 2 4 2

14211211224

1 8/3 4/3 4/3 8/3 4/3 8/3 4/3 8/3 8/3 4/3

12222114411

12222141141

1 4/3 8/3 8/3 4/3 8/3 4/3 8/3 4/3 8/3 4/3 8/3 1 4/3 8/3 8/3 4/3 4/3 8/3 8/3 4/3 8/3 4/3 1 4 1 1 2 1 1 2 4 2 2

1 8/3 4/3 4/3 8/3 8/3 4/3 4/3 8/3 4/3 8/3 1 8/3 4/3 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 1 2 2 2 2 4 1 1 1 1 4

1 8/3 8/3 4/3 4/3 4/3 8/3 4/3 4/3 8/3 8/3 1 8/3 8/3 4/3 4/3 4/3 4/3 8/3 8/3 4/3 8/3

12411222114

1 4/3 4/3 8/3 8/3 8/3 4/3 8/3 8/3 4/3 4/3 1 4/3 8/3 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3 BnB.

- We tested up to n = 10, with and without noise.
- Results are completely accurate...
- We need to find a way to break it! MatLab code available: http:

//www.math.uakron.edu/~sf34/class_home/research.htm

For any circular split system S, $\mathbf{x}(S)$ is a vector whose *ij*-component is the number of circular orderings consistent with that system for which *i* and *j* are adjacent.

These vertices
$$\mathbf{x}(t)$$
 obey $\sum_{\substack{i=1\\i\neq j}}^{n} x_{ij} = 2^{k+1}$ for $j = 1, \dots, n$

where k is the number of *bridges* in the diagram.

Split network vectors.

Split network vectors.

Notes: Agrees with previous x(t). Gives TSP when there are no bridges.

Definition. Let BME(n, k) be the convex hull of the split network vectors for the split networks having n leaves and k bridges.

Idea: a split network distance vector d (seen as a linear functional) from a split network (with edge lengths) and $j \ge k$ bridges will be simultaneously minimized at the vertices of BME(n, k) which correspond to the cycles which d resolves.

A filtration of split networks.

Specifically: A tree metric d (as linear functional) is minimized simultaneously at the vertices of the TSP which correspond to the cycles with which d is compatible A filtration of split networks.

Or...

We might propose an extension of the BME polytope which is the the convex hull of all vectors $\eta(S)$ for binary split systems S on a set of size *n*.

This new polytope has vertices corresponding to all the binary split systems.

These binary split systems come in two varieties: the binary phylogenetic trees and the split systems for which any split is incompatible with at most one other split. Next.

Next.

Thanks so much!