Galois connections for phylogenetic networks and their polytopes.

with S. Devadoss, San Diego; C. Durell and D. Scalzo, Akron.

Trees

Episodic radiations in the fly tree of life, [Wiegmann et.al. PNAS 2011]

Splits

1) Phylogenetic networks: splits are minimal cuts. These model all the ways heredity can happen. Here, N is 1-nested: each edge in at most 1 cycle.

Phylogenetic trees: every edge is a split of $[n]$.
$A|B=\{2,3\}|\{1,4,5,6,7,8\}$
2) Split networks: splits are parallel classes of edges. These model all the ways that genetic distances can be measured.
Here, s is circular: it can be drawn on the plane with leaves on the exterior in circular order c.

Ordering

Partial ordering on both sets: $x \leqslant y$ when the set of splits displayed by x is contained in that displayed by y.
(Two networks, split or phylogenetic, are considered equivalent when their sets of splits are the same.)

Ordering

Partial ordering on both sets: $x \leqslant y$ when the set of splits displayed by x is contained in that displayed by y.
(Two networks, split or phylogenetic, are considered equivalent when their sets of splits are the same.)

Mapping: [Gambette, Huber, Scholz, 2017]

Both maps are monotone.

Galois connection: Reflection

$$
L(s) \leq N \Longleftrightarrow s \leq \Sigma(N)
$$

L is surjective; Σ is injective.

Polytopes

Definition

For a binary, level-1 phylogenetic network N, the vector $\mathbf{x}(N)$ is defined to have lexicographically ordered components $x_{i j}(N)$ for each unordered pair of distinct leaves $i, j \in[n]$ as follows:

$$
x_{i j}(N)= \begin{cases}2^{k-b_{i j}} & \text { if there exists } c \text { consistent with } N ; \text { with } i, j \text { adjacent in } c, \\ 0 & \text { otherwise. }\end{cases}
$$

where k is the number of bridges in N and $b_{i j}$ is the number of bridges crossed on any path from i to j.
The convex hull of all the $\mathbf{x}(N)$ with k nontrivial bridges is the level- 1 network polytope $\operatorname{BME}(n, k)$.

$(4,2,1,0,1,2,1,0,1,2,0,2,4,0,4)$
$(2,0,1,0,1,2,0,0,0,1,0,1,2,0,2)$

Result: faces of $\operatorname{BME}(n, k)$

Theorem

Every n leaved 1-nested network N corresponds to a face of each $\operatorname{BME}(n, k)$ polytope.

That face has vertices all the binary level-1 k-bridge networks N^{\prime} such that $N \leq N^{\prime}$.

Counting vertices

Counting vertices

$1 \cdot 3$

Counting vertices

Counting vertices

Counting vertices

Counting vertices

$1 \cdot \frac{(n-1)!}{2}$

Counting vertices

$1 \cdot \frac{(n-1)!}{2} T(n, k)$

Counting vertices

$1 \cdot \frac{(n-1)!}{2} T(n, k)$

Counting vertices

$$
1 \cdot \frac{(n-1)!}{2} T(n, k)
$$

Counting vertices

$1 \cdot \frac{(n-1)!}{2} T(n, k) \frac{1}{2^{k}}$

Counting vertices: note the cases $k=0, k=n-3$.

Weighting

A weighting of a split network s is a function of splits, $w: s \rightarrow \mathbb{R}_{\geq 0}$.
For a weighted split network s we define the distance vector \mathbf{d}_{s} where

$$
\mathbf{d}_{s}(i, j)=\sum_{i \in A, j \in B} w(A \mid B)
$$

where the sum is over all splits of s with i in one part and j in the other.

A weighting for a phylogenetic network N is a function from edges to positive reals.
We define \mathbf{d}_{N} where

$$
\mathbf{d}_{N}(i, j)=\min \left\{\sum_{e \in P} w(e) \mid P \text { path } i \rightarrow j\right\}
$$

is the minimum sum of the weights of edges over all paths i to j.

Weighting

Theorem
For any weighted planar phylogenetic network N, the distance vector \mathbf{d}_{N} obeys the Kalmanson condition: there exists a circular ordering c of $[n]$ such that for all $1 \leq i<j<k<I \leq n$ in that ordering,
$\max \left\{\mathbf{d}_{N}(i, j)+\mathbf{d}_{N}(k, l), \mathbf{d}_{N}(j, k)+\mathbf{d}_{N}(i, l)\right\} \leq \mathbf{d}_{N}(i, k)+\mathbf{d}_{N}(j, l)$.

Theorem
Theorem: For any Kalmanson vector \mathbf{d}, there is a unique weighted split network $s=N N(\mathbf{d})$ such that $\mathbf{d}_{s}=\mathbf{d}$.

Weighting

For any Kalmanson d for [n], we can restrict the poset of phylogenetic networks (with weighting) to those that have $\mathbf{d}_{N}=\mathbf{d}$.

For a weighted split network s define $L_{w}(s)$ to be $L(s)$ with weight function

$$
w_{s}(e)=\sum_{e \in C(A \mid B)} w(A \mid B)
$$

where the sum is of weights in s of splits whose cuts the edge is a member of. For a weighted phylogenetic network N define

$$
S_{w}(N)=N N\left(d_{N}\right)
$$

Galois connection: Coreflection

$$
\begin{gathered}
L_{w}(s) \leq N \Longleftrightarrow s \leq S_{w}(N) \\
L_{w} \text { is } 1-1 ; S_{w} \text { is onto. }
\end{gathered}
$$

Result

By comparing the two connections and the face theorem, we see that:

Theorem
Given any weighted phylogenetic network N, the product $\mathbf{x}(\hat{N}) \cdot \mathbf{d}_{N}$ is minimized simultaneously for the binary networks \hat{N} with k bridges such that $\overline{S_{w}(N)} \leq \Sigma(\hat{N})$.
In $\overline{S_{w}(N)}$ the overline indicates forgetting the weighting.

Polytope Pictures: Duality

$\operatorname{BME}(4,0)$ on left, with $\operatorname{BME}(4,1)$ included.
$\operatorname{CSN}(4)$ on the right, with $\mathrm{BHV}(4)$ included.

Facets

Facets

Nesting

Nesting

Nesting

Nesting

Nesting

Thanks so much!

Thanks so much!

Questions...

Thanks so much!

Questions...

What are the antipodes of the incidence Hopf algebras of these posets?

