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Episodic radiations in the fly tree of life, [Wiegmann et.al. PNAS 2011]



Splits
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1) Phylogenetic networks: splits are minimal cuts.
These model all the ways heredity can happen.
Here, N is 1-nested: each edge in at most 1 cycle.
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N s

2) Split networks: splits are parallel classes of edges.
These model all the ways that genetic distances can
be measured. 
Here, s is circular: it can be drawn on the plane with
leaves on the exterior in circular order  c.  

Phylogenetic trees: every edge is a split of [n].

A  B = {2, 3} {1, 4, 5, 6, 7, 8} 
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Partial ordering on both sets: x <  y when the set of splits displayed by x is contained in that displayed by y.

(Two networks, split or phylogenetic, are considered equivalent when their sets of splits are the same.)
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Mapping: [Gambette, Huber, Scholz, 2017]
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Both maps are monotone.



Galois connection: Reflection
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L(s)

N 

s Σ(N) 

ΣL
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< 

L(s) ≤ N ⇐⇒ s ≤ Σ(N)

L is surjective; Σ is injective.



Polytopes

Definition
For a binary, level-1 phylogenetic network N, the vector x(N) is defined
to have lexicographically ordered components xij(N) for each unordered
pair of distinct leaves i , j ∈ [n] as follows:

xij(N) =

{
2k−bij if there exists c consistent with N; with i , j adjacent in c ,

0 otherwise.

where k is the number of bridges in N and bij is the number of bridges
crossed on any path from i to j .
The convex hull of all the x(N) with k nontrivial bridges is the level-1
network polytope BME(n, k).
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Result: faces of BME(n, k)

Theorem
Every n leaved 1-nested network N corresponds to a face of each
BME(n, k) polytope.

That face has vertices all the binary level-1 k-bridge networks N ′

such that N ≤ N ′.

68

1

2
3

4

5

7
6

8

1

2

3 4

5

7
6

4

5

8

1

2

3

7

N N ’ N ’’



Counting vertices
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Counting vertices: note the cases k = 0, k = n − 3.
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Weighting

A weighting of a split network s is a function of splits,
w : s → R≥0.
For a weighted split network s we define the distance vector ds
where

ds(i , j) =
∑

i∈A,j∈B
w(A|B)

where the sum is over all splits of s with i in one part and j in the
other.

A weighting for a phylogenetic network N is a function from edges
to positive reals.
We define dN where

dN(i , j) = min{
∑
e∈P

w(e) | P path i → j}

is the minimum sum of the weights of edges over all paths i to j .



Weighting

Theorem
For any weighted planar phylogenetic network N, the distance
vector dN obeys the Kalmanson condition: there exists a circular
ordering c of [n] such that for all 1 ≤ i < j < k < l ≤ n in that
ordering,

max{dN(i , j) + dN(k , l),dN(j , k) + dN(i , l)} ≤ dN(i , k) + dN(j , l).

Theorem
Theorem: For any Kalmanson vector d, there is a unique weighted
split network s = NN(d) such that ds = d.



Weighting

For any Kalmanson d for [n], we can restrict the poset of
phylogenetic networks (with weighting) to those that have dN = d.

For a weighted split network s define Lw (s) to be L(s) with weight
function

ws(e) =
∑

e∈C(A|B)

w(A|B)

where the sum is of weights in s of splits whose cuts the edge is a
member of. For a weighted phylogenetic network N define

Sw (N) = NN(dN)



Galois connection: Coreflection

6

8

1

2

3 4

5

7

6

8
1

2

3 4
5

7

8

1

2

3

L  (s)

N 

S  (N) 

SL

= 

< 

100

2

2

2
3

2

3

1

2

1

1

1 1

1

1 1

1

1

1.5

1

1

1

1

3

3
1

1

1

1

1

1.5

1.5

1.5 0.5

2

s 

3

6

8
1

2

3 4
5

7
1.5

1

1

1

1

3

3
1

1

1

1

1

1.5

1.5

1.5 0.5

2

3

6

4
5

7

1

1

3

3

0.5

2

3

1.5

1

1

1

1

1

1.5

1.5

2

w w 

w 

w 
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Lw is 1-1; Sw is onto.



Result

By comparing the two connections and the face theorem, we see
that:

Theorem
Given any weighted phylogenetic network N, the product x(N̂) · dN
is minimized simultaneously for the binary networks N̂ with k
bridges such that Sw (N) ≤ Σ(N̂).

In Sw (N) the overline indicates forgetting the weighting.



Polytope Pictures: Duality
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BME(4,0) on left, with BME(4,1) included.

CSN(4) on the right, with BHV(4) included.



Facets
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Nesting

4

5

3

1

2

3

5

4

1

2

4

3

5

1

2



Nesting

4

5

3

1

2

3

5

4

1

2

4

3

5

1

2



Nesting

4

5

3

1

2

3

5

4

1

2

4

3

5

1

2



Nesting

4

5

3

1

2

3

5

4

1

2

4

3

5

1

2



Nesting

4

5

3

1

2

3

5

4

1

2

4

3

5

1

2



Thanks so much!



Thanks so much!

Questions...



Thanks so much!

Questions...

What are the antipodes of the incidence Hopf algebras of these
posets?


