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FACETS OF THE BALANCED MINIMAL EVOLUTION POLYTOPE.

STEFAN FORCEY, LOGAN KEEFE, AND WILLIAM SANDS

Abstract. The balanced minimal evolution (BME) method of creating phylogenetic
trees can be formulated as a linear programming problem, minimizing an inner product
over the vertices of the BME polytope. In this paper we undertake the project of
describing the facets of this polytope. We classify and identify the combinatorial
structure and geometry (facet inequalities) of all the facets in dimensions up to 5, and
classify even more facets in all dimensions. A full set of facet inequalities would allow
a full implementation of the simplex method for finding the BME tree–although there
are reasons to think this an unreachable goal. However, our results provide the crucial
first steps for a more likely-to-be-successful program: finding efficient relaxations of
the BME polytope.

1. Introduction

The goal of phylogenetics is to take a set of related items– biological examples are
usually referred to as taxa: populations, species, individuals or genes–and to construct a
branching diagram that explains how they are related chronologically. The diagram we
will be concerned with is a binary tree with labeled leaves. In other words, a cycle-free
graph with nodes (vertices) which are either of degree one (touching a single edge) or
degree three, and with a set of distinct items assigned to the degree one nodes–the leaves.
We study a method called balanced minimal evolution. This method begins with a given
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Figure 1. There are two combinatorial types of facets of the 5-
dimensional BME polytope, shown here as Schlegel diagrams. The poly-
tope on the left is the 4-simplex, and on the right is the 4d Birkhoff
polytope. The Schlegel diagram for the latter is expanded in Figure 11.
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set of n items and a symmetric (or upper triangular) square n× n dissimilarity matrix
whose entries are numerical dissimilarities, or distances, between pairs of items. From
the dissimilarity matrix the balanced minimal evolution (BME) method constructs a
binary tree with the n items labeling the n leaves. The BME tree has the property
that the distances between its leaves most closely match the given distances between
corresponding pairs of taxa.

By “most closely match” in the previous paragraph we mean the following: the
reciprocals of the distances between leaves are the components of a vector c, and this
vector minimizes the dot product c · d where d is the list of distances in the upper
triangle of the distance matrix.

More precisely: Let the set of n distinct species, or taxa, be called S. For convenience
we will often let S = [n] = {1, 2, . . . , n}. Let vector d be given, having

(

n

2

)

real valued
components dij , one for each pair {i, j} ⊂ S. There is a vector c(t) for each binary
tree t on leaves S, also having

(

n

2

)

components cij(t), one for each pair {i, j} ⊂ S.
These components are ordered in the same way for both vectors, and we will use the
lexicographic ordering: d = 〈d12, d13, . . . , d1n, d23, d24, . . . , dn−1,n〉.

We define, following Pauplin [Pau00]:

cij(t) =
1

2l

where l is the number of internal nodes (degree 3 vertices) in the path from leaf i to
leaf j.

The BME tree for the vector d is the binary tree t that minimizes d·c(t) for all binary
trees on leaves S. The value of setting up the question in this way is that it becomes a
linear programming problem. The convex hull of all the vectors c(t) for all binary trees
t on S is a polytope BME(S), hereafter also denoted BME(n) or Pn as in [EHPY08]
and [HHY11]. The vertices of Pn are precisely the (2n − 5)!! vectors c(t). Minimizing
our dot product over this polytope is equivalent to minimizing over the vertices, and
thus amenable to the simplex method.

In Figure 2 we see the 2-dimensional polytope P4. In that figure we illustrate a
simplifying choice that will be used throughout: rather than the original fractional
coordinates cij we will scale by a factor of 2n−2, giving coordinates xij = 2n−2cij =
2n−2−l. Since the furthest apart any two leaves may be is a distance of n − 2 internal
nodes, this scaling will result in integral coordinates.

A clade is a subgraph of a binary tree induced by an internal (degree three) node
and all of the leaves descended from it in a particular direction. In other words: given
an internal node v we choose two of its edges and all of the leaves that are connected to
v via those two edges. Equivalently, given any internal edge, its deletion separates the
tree into two clades. Two clades on the same tree must be either disjoint or nested, one
contained in the other. A cherry is a clade with two leaves. We often refer to a clade
by its set of (2 or more) leaves. A pair of intersecting cherries {a, b} and {b, c} have
intersection in one leaf b, and thus cannot exist both on the same tree. A caterpillar is
a tree with only two cherries.
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2. New Results

A facet of a polytope is a top-dimensional face of that polytope’s boundary, or a
co-dimension-1 face. Faces of a polytope can be of any dimension, from 0 to that of
the (improper) face which is the polytope itself. Our main results are to describe many
new faces, especially facets, of the nth balanced minimal evolution polytope Pn.

For n = 5 we completely classify the facets according to combinatorial type of their
vertices. There are three classes of facet for n = 5, which we refer to as intersecting-
cherry facets, caterpillar facets, and cyclic-ordering facets. There are respectively 30,
10 and 12 of these types of facet in P5.

In Theorem 4.3 we show that any pair of intersecting cherries corresponds to a facet
of Pn. In Theorem 4.1 we (redundantly, for demonstrative purpose) show a special case
of this facet for n = 5 and in Theorem 4.2 we show that for n = 5 these facets turn out
to be equivalent to Birkhoff polytopes.

In Theorem 6.3 we show that any caterpillar tree with fixed ends corresponds to a
facet of Pn. For n = 5 we show in Theorem 6.2 that this facet is a Birkhoff polytope.

In Theorem 5.1 we show that, for n = 5, for each free cyclic ordering of leaves there
is a corresponding facet which is combinatorially equivalent to a simplex.

The right half of Table 1 summarizes these new results.
First though, in the next section, we go over some previously discovered facts about

the edges and faces of the BME polytopes. Our contribution there is Theorem 3.1, in
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Figure 2. The polytope P4 is a triangle. At the top we label the vertices
with the three binary trees with leaves 1 . . . 4. Each edge shows a nearest-
neighbor interchange; for instance the exchange of leaves 3 and 4 on the
bottom edge. At bottom left are Pauplin’s original coordinates and at
bottom right are the coordinates, scaled by 2n−2 = 4, which we will use.
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which we show that clade-faces can never be facets. We also take the opportunity to
advertise future directions for the research.

3. Edges, Clade-faces and future goals

Known results about the BME polytope are closely related to several algorithms
used to determine optimal phylogenetic trees. Of course with a reasonably small set of
species or individuals one could simply create the entire (finite) space of all the possible
binary trees t with those species as the leaves, calculating the dot product d · c(t) for
each one and then choosing the optimal tree as the one minimizing this product. Since
this procedure would take far too long (it is NP-hard, as pointed out in [Day87] and
[FJ12]) as soon as the size of the set grows beyond a certain point, we are interested in
shortcut approaches. Two of these are the fastME algorithm and the neighbor joining
algorithm. The former is introduced in [DG02] and the latter is developed in [SN87].

In [GS06] the authors show that neighbor-joining is a greedy algorithm for the BME
method. The fastME algorithm however operates by searching the space of binary trees,

n dim. vertices facets facet inequalities number of number of
(classification) facets vertices

in facet

3 0 1 0 - - -
4 2 3 3 xab ≥ 1 3 2

xab + xbc − xac ≤ 2 3 2
5 5 15 52 xab ≥ 1 10 6

(caterpillar)
xab + xbc − xac ≤ 4 30 6
(intersecting-cherry)

xab + xbc + xcd + xdf + xfa ≤ 13 12 5
(cyclic ordering)

6 9 105 90262 xab ≥ 1 15 24
(caterpillar)

xab + xbc − xac ≤ 8 60 30
(intersecting-cherry)

n > 4
(

n

2

)

− n (2n− 5)!! ? xab ≥ 1
(

n

2

)

(n− 2)!

(caterpillar)

xab + xbc − xac ≤ 2n−3

(

n

2

)

(n− 2) 2(2n− 7)!!

(intersecting-cherry)
Table 1. Stats for the BME polytopes Pn. The first four columns
are found in [Hug08] and [HHY11]. The inequalities are given for any
a, b, c, · · · ∈ [n]. Each can be translated to an inequality in the coordi-
nates cij simply by dividing the right hand side by 2n−2. For instance,
when n = 4, the second inequality becomes cab + cbc − cac ≤ 1/2. Note
that for n = 4 the three facets are described twice: our inequalities are
redundant.
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moving from one to another via nearest-neighbor interchange moves. These moves are
illustrated by the edges of the triangle in Figure 2. Thus one goal for further study
of the BME polytope is a more complete description of its edges, in order to more
fully realize the simplex method. In [HHY11] the authors show that any subtree-prune-
regraft move is associated to an edge in the BME polytope. The study of the facets of
the BME polytope which we begin here can be seen as an alternate path to hopefully
even better approximations of the simplex method.

Since the total number of facets grows so quickly (90262 for n = 6 and beyond our
computational patience for n = 7) and since the problem is NP -hard, we doubt that
a complete description of facets will be easy to find. Even if it was found the simplex
method on all these facets may be infeasible. In the current work our stated desire to
completely characterize the face structure of the BME polytope must be taken in this
light: any advances are valuable despite the fact that we may be on an endless journey.
The value of this knowledge is in its potential application, via the following conjecture:
there is a subset of facet inequalities of the BME polytope (as found in this paper and
its sequel) which will give us a useful relaxation of the BME polytope.

In fact we conjecture that with just a fraction of the list of facet and face inequali-
ties of the BME polytope we can describe a larger, enveloping polytope which recovers
most or all of our original integral BME vertices, plus additional vertices with detectably
incorrect coordinates. Should the conjecture hold, the inequalities we use for the relax-
ation could be generated as needed in a branch-and-bound algorithm, halting when one
of our powers-of-2 vertices is returned. There is possible potential for gains in speed
over the existing algorithms, subject of course to testing.

In the sequel to this paper we describe facets and faces based on trees that display
a given split. A split of the set S of leaves for our BME trees is a partition of S into
two non-empty parts, S1 and S2. A tree displays a split if S1 makes up the leaves of a
clade. (S2 will make up the leaves of another clade.)

In [HHY11] it is proven that any set of disjoint clades is associated with a specific
face of the BME polytope. The clade-faces turn out to be combinatorially equivalent
to smaller-dimensional BME polytopes. Precisely, given a collection of k clades using
disjoint subsets of S as leaves, the face of Pn corresponding to this clade will be com-
binatorially equivalent to Pn−y+k where y is the total number of leaves in the k clades.
That is, this face will be itself a BME polytope, equivalent to one based on a set of
n−y+k leaves. The k clades play the role of leaves, since they are fixed. Any vertex of
this face can be described as a binary tree with n leaves such that all k disjoint clades
are present. However, these clade-faces fail to describe any of the facets of the BME
polytope.

Theorem 3.1. If n ≥ 4 then no clade face of Pn is a facet of Pn.

We expect this to be true since the largest dimension clade-face would be that asso-
ciated to a single cherry: the smallest clade. Here is a proof that takes a more general
approach.

Proof. Since a face of Pn corresponding to a disjoint set of k clades containing a total of
y leaves is combinatorially equivalent itself to a smaller BME polytope, its dimension is
that of the polytope Pn−y+k. Now, a facet of a BME polytope has dimension

(

n

2

)

−n−1,
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for n leaves. Thus if a facet was described by a disjoint set of k clades containing a
total of y leaves, we could say that

(

n

2

)

− n− 1 =

(

n− y + k

2

)

− (n− y + k).

This equation implies the quadratic equation p2 + (2n − 3)p + 2 = 0 , where p =
k − y must be a negative integer. The roots occur at p = −n +

√
q/2 + 3/2 where

q = 4n2 − 12n+ 1.
So for p to be an integer, we need

√
q to be an odd integer, so q is the square of an

odd (positive) integer 2m− 1.
Thus 4n2 − 12n+ 1 = (2m− 1)2 = 4m2 − 4m+ 1 for integer m > 0.
Subtracting the 1’s and dividing by 4 we get:

n(n− 3) = m(m− 1).

Letting n = i+ 1 for i > 1 we see that n(n− 3) = i(i− 1)− 2. Thus any term am in
the sequence of integers m(m−1) for m > 1 will always be equal to n(n−3)+2 = bn+2
for some n. Since n(n − 3) increases faster than by simply adding 2, the term am in
question cannot be equal to any term after bn (nor any before, since both sequences are
increasing.)

In fact the only time that the equation can hold is for m = 1 and n = 3. �

This negative fact of course raises the question of how to characterize and describe the
facets of Pn. We would eventually like a complete description, both combinatorially
and geometrically. On the combinatorial side we would like to know which sets of
vertices are those of a facet, and what other polytopes and constructions of polytopes
(products, sums, pyramids, polars) those facets are equivalent to. On the geometrical
side we would like to know how to quickly find the list of facet inequalities that describe
Pn. In Figure 3 we show the data for n = 5.

4. Facets from intersecting cherries.

The first type of facet of P5 that we found is associated to any pair of elements of
S = [5], along with a third element chosen after the pair. Thus there are

(

5
2

)

(3) = 30
of these facets. Each of these facets has its set of vertices as follows:

Theorem 4.1. For each pair of cherries with leaves {a, b} and {b, c}, where the pair
a, c and the element of intersection b are three distinct elements from S = [5], there is
a facet of P5 whose six vertices correspond to trees that have one of the two cherries.

Figure 4 shows the geometry of an intersecting-cherry facet of P5.

Proof. There are six total vertices since given one of the pair of cherries there are 3
trees which have that cherry, since there are 3 elements to choose from to make the
lone leaf. To show that these six vertices are the vertices of a face we need to find a
linear inequality satisfied by all the vertices of P5 which becomes an equality only for
the specified six vertices. Then to show that the face is a facet we need to show that
its dimension is one less than the dimension of the entire polytope P5. First we show
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that the trees which have either a cherry with leaves {a, b} or with leaves {b, c} have
associated points obeying:

xab + xbc − xac = 4.

This equation holds for our trees since if {a, b} is the cherry then xab = 4 and
xac = xbc. Likewise if {b, c} is the cherry then xbc = 4 and xac = xab.

Now we need to show that for any vertex that has neither of our pair of cherries,
then that vertex satisfies:

xab + xbc − xac < 4.

This inequality holds since having neither cherry with leaves {a, b} nor with leaves
{b, c} implies that xab ≤ 2 and xbc ≤ 2, while we know that xac ≥ 1.

To see that our face is a 4-dimensional facet, we show that it contains a flag of
subfaces (sequence of faces each contained in its successor) which is of length 5. We
can proceed starting with any vertex and edge, since when n = 4 any pair of vertices
have an edge between them. Our flag chosen for the purposes of this proof is shown in
Figure 5, left to right with the vertex and edge first. We choose any vertex, but then

1

2 4

5

3

x(t) = (1, 4, 1, 2, 1, 4, 2, 1, 2, 2)

{(4,1,1,2,1,1,2,4,2,2)

  (4,2,1,1,2,1,1,2,2,4)

  (4,1,2,1,1,2,1,2,4,2)

  (2,1,4,1,2,2,2,1,4,1)

  (2,2,2,2,1,4,1,1,4,1)

  (1,4,1,2,1,4,2,1,2,2)

  (1,2,1,4,2,4,1,2,2,1)

  (2,1,1,4,2,2,2,4,1,1)

(1,1,2,4,4,2,1,2,1,2)

(1,1,4,2,4,1,2,1,2,2)

(2,2,2,2,4,1,1,1,1,4)

(2,4,1,1,2,2,2,1,1,4)

(1,4,2,1,1,2,4,2,1,2)

(1,2,4,1,2,1,4,2,2,1)

(2,2,2,2,1,1,4,4,1,1)}

t = 

1

2 5

4

3

x(t) = (1, 4, 2, 1, 1, 2, 4, 2, 1, 2)

t = 

Figure 3. Two sample vertex trees of P5 with their respective coor-
dinates shown beneath, followed by all 15 vertex points calculated for
n=5, and the f -vector for P5 (which gives the number of faces in each
dimension starting with 0) as found by polymake [GJ00].
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choose an edge which connects that vertex with another that shares with the first one
of our special cherries, say {b, c}.

Next, the dimension 2 subface in our flag is formed by adding the third vertex that
also contains the cherry {b, c}. These three vertices form a clade face–the clade is the
cherry.

The dimension 3 subface is found by adding a fourth vertex whose tree has both
cherries {a, b} and {c, f}. Together these four make a face: all four points obey the

d

f

b c

d

f

b

a

c

df

b a

c

d

f

b

a

c

d

f b

a

c

d

f

b

a

c

a

Figure 4. A generic facet of P5 with each vertex labeled by a tree which
contains one of two intersecting cherries: {a, b} and {b, c}. The dashed
edges outline the clade-faces (triangles) associated with those two cher-
ries.
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equation xbd − xcd = 0. The last two remaining trees in the facet are forced to obey
xbd − xcd < 0.

�

Consider an n × n matrix as a vector with n2 components. Taking the convex hull
of the n! permutation matrices gives a polytope known as Bn, or B(n), the Birkhoff
polytope, or assignment polytope, of order n. This polytope has dimension (n − 1)2,
and appears in many situations, as seen in [BS96]. Here it appears again:

Theorem 4.2. The intersecting-cherry facets of P5 are combinatorially equivalent to
the Birkhoff polytope of dimension 4.

Proof. This fact was first verified by polymake for a specific intersecting-cherry facet,
where the isomorphism of vertices can be seen as preserving vertex-facet incidence.

d

f

b c

d

f

b

a

c

df

b a

c

d

f

b

a

c

d

f b

a

c

d

f

b

a

c

d

f

b c

df

b a

c

d

f

b

a

c

d

f b

a

c

d

f

b c

df

b a

c

d

f

b

a

c

d

f

b c

df

b a

c

d

f

b c

a

a

a

a

a

x   - x   = 0bd       cd

Figure 5. Left to right these columns show the sets of trees in faces
that form a flag of a facet of P5 based on two intersecting cherries.



10 STEFAN FORCEY, LOGAN KEEFE, AND WILLIAM SANDS

Since all the intersecting-cherry facets are combinatorially equivalent by a common
permutation of the coordinates, checking one is sufficient for checking all. To see the
isomorphism compare the two Schlegel diagrams: from Figure 4 and from Figure 9.

�

We leave open for future study the question of how one might determine the general
isomorphism between an intersecting-cherry facet and the 4d-Birkhoff polytope. It
would also be quite interesting to see if the relationship extends to higher dimensions.
For now we only say the following for the general case of Pn:

Theorem 4.3. Each pair of intersecting cherries from S = [n] corresponds to a certain
facet of the polytope Pn.

Proof. The trees which have either a cherry with leaves {a, b} or with leaves {b, c} have
associated points obeying:

xab + xbc − xac = 2n−3.

This equation holds for our trees since if {a, b} is the cherry then xab = 2n−3 and
xac = xbc. Likewise if {b, c} is the cherry then xbc = 2n−3 and xac = xab.

For any vertex that has neither of our pair of cherries, then that vertex satisfies:

xab + xbc − xac < 2n−3.

This inequality holds since having neither cherry with leaves {a, b} nor with leaves
{b, c} implies that xab ≤ 2n−4 and xbc ≤ 2n−4, while we know that xac ≥ 1.

So far we have shown that the collection of trees with either cherry {a, b} or {b, c}
forms a face Pabc with inequality xab + xbc − xac ≤ 2n−3. Next we show that the face
Pabc is in fact a facet, of dimension

(

n

2

)

− n− 1. The strategy is to show existence of a
flag of Pn beginning with Pabc and ending with a single vertex, which has total length
(

n

2

)

− n. We start with a chain of sub-faces of Pabc which has length n − 3, including

Pabc itself. Then we show a final sub-face which has dimension
(

n−1
2

)

− (n − 1). Thus

the entire flag is of length
(

n−1
2

)

− (n − 1) + 1 + n − 3 =
(

n

2

)

− n. We have illustrated
this flag in Figure 6.

After Pabc the largest face in our flag is the one whose vertices are described as each
corresponding to a tree that has either the cherry {a, b} or has both the cherry {b, c}
and the cherry {a, f}. We call this face Pabc,f . The vertices of Pabc,f obey the equality:

xbc + xbf − xac − xaf = 0.

The trees with cherry {a, b} have equal distances from those two leaves, while the
remaining trees have coordinates xbc = xaf and xbf = xac. Trees that have cherry {b, c}
but not cherry {a, f} obey the inequality:

xbc + xbf − xac − xaf > 0.

This is true since the tree cannot have the cherry {a, c} either, so xac + xaf ≤ 2n−3.
Next, given an ordering (y1, y2, . . . , yn−4) of the leaves not including a, b, c or f, there is

a sequence of n− 5 sub-faces called P 1
abc,f , P

2
abc,f , . . . , P

n−5
abc,f . The face P k

abc,f has vertices
described as each corresponding to a tree that has either the cherry {a, b} or is a
caterpillar that has both the cherry {a, f}, at one end, and the cherry {b, c} at the
other. Between the cherries in the caterpillar are the leaves y1, . . . , yk in that order
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beginning closest to the cherry {a, f}. The remaining leaves yj for j > k fill in the
caterpillar in any order; note that there are n− 5 such collections since the last leaf is
determined when we reach P n−5

abc,f . See Figure 6.

The vertices of P k
abc,f obey the linear equality:

(2n−3 − 1)xayk − (2n−3 − 1)xbyk + (2n−3−k − 2k)xab = (2n−3−k − 2k)2n−3,

or, more conveniently,

(2n−3 − 1)(xayk − xbyk) = (2n−3 − xab)(2
n−3−k − 2k).

The equality is clear for trees that have the cherry {a, b}, since it becomes 0 = 0. For
caterpillar trees of the face P k

abc,f we have xab = 1 and xayk − xbyk = 2n−3−k − 2k.

We need to show that for trees in Pabc,f that are not in P 1
abc,f we have the inequality:

(2n−3 − 1)(xay1 − xby1) < (2n−3 − xab)(2
n−3−1 − 21).

There are two cases:
Case 1) If the tree is a caterpillar, with leaf y1 more than two nodes from leaf a, then

the inequality follows from xab = 1 and xay1 − xby1 < 2n−4 − 2.
Case 2) If the tree is not a caterpillar, we show the inequality by induction on the

number n of leaves. We check the base case n = 6, where the inequality becomes
0 < (23 − 2)(22 − 2).

Assuming the inequality for m < n, then in the case for n leaves we choose a cherry
and replace it with a single leaf. There are two subcases of Case 2.

Subcase (i): If leaf y1 was in the chosen cherry then we call the replacement leaf y1
instead, and by induction we have the inequality:

(2n−1−3 − 1)(xay1 − xby1) < (2n−1−3 − xab/2)(2
n−1−4 − 2).

where the values for the coordinates mentioned are the same as in the n-leaved tree
before replacement.

Multiplying by 2, we get:
(2n−3 − 2)(xay1 − xby1) < 2(2n−1−3 − xab/2)(2

n−5 − 2)
= (2n−3 − xab)(2

n−5 − 2).
Expanding on the left and then adding to both sides gives:
(2n−3 − 1)(xay1 − xby1) < (2n−3 − xab)(2

n−5 − 2) + xay1 − xby1

Expanding on the right via 2n−5 = 2n−4 − 2n−5, we get:
(2n−3 − 1)(xay1 − xby1) < (2n−3 − xab)(2

n−4 − 2)− 2n−5(2n−3 − xab) + xay1 − xby1

= (2n−3 − xab)(2
n−4 − 2)− (2n−4)2 + 2n−4xab/2) + xay1 − xby1

Using the facts that, for our non-caterpillar tree, we know xay1 −xby1 ≤ 2n−4− 2 and
xab ≤ 2n−4, we get:

(2n−3 − 1)(xay1 − xby1) < (2n−3 − xab)(2
n−4 − 2)− (1

2
(2n−4)2 − 2n−4 + 2).

The last term is a polynomial in 2n−4 whose minimum is 3/2 when n = 4. Thus it
can be dropped to achieve the desired inequality.

Subcase (ii) If leaf y1 is not in the chosen cherry then by induction we have the
inequality:

(2n−1−3 − 1)(xay1/2− xby1/2) < (2n−1−3 − xab/2)(2
n−1−4 − 2).
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where the values for the coordinates mentioned are the same as in the n-leaved tree
before replacement.

Multiplying by 4, we get:
(2n−3 − 2)(xay1 − xby1) < (2n−3 − xab)(2

n−4 − 4)
Expanding on the left and then adding to both sides gives:
(2n−3 − 1)(xay1 − xby1) < (2n−3 − xab)(2

n−4 − 2)− 2(2n−3 − xab) + xay1 − xby1

Using the facts that, for our non-caterpillar tree, we know xay1 −xby1 ≤ 2n−4− 2 and
xab ≤ 2n−4, we get:

(2n−3 − 1)(xay1 − xby1) < (2n−3 − xab)(2
n−4 − 2)− (2n−2 − 2n−3 − 2n−4 + 2)

= (2n−3 − xab)(2
n−4 − 2)− (4(2n−4)− 2(2n−4)− 2n−4 + 2)

= (2n−3 − xab)(2
n−4 − 2)− (2n−4 + 2).

Since the last term is greater than 2, it can be dropped to achieve the desired in-
equality.

Next we need to check that for trees in P k
abc,f that are not in P k+1

abc,f we have the
inequality:

(2n−3 − 1)(xayk − xbyk) < (2n−3 − xab)(2
n−3−k − 2k).

This inequality is straightforward, since xab = 1 and since the leaf yk is forced to be
closer to leaf b and further from leaf a, if it is not in the kth position.

�

a b b c

U{ } U

a b b c

U{ }
a f

a b

U{ }U

b
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. . .
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1
y

U U

. . .

a b

U{ }
b

a

c

. . .

f

1
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2
y

a b

U{ }
b

a

c

. . .

f

1
y

2
y

U

n-5
y a b

{ }U

Figure 6. Each set is the collection of trees (vertices of Pn) that have
any placement of the remaining labels from S into the blank leaves shown.
The containment of sets also shows the flag of our facet Pabc. The con-
tainment is Pabc ⊃ Pabc,f ⊃ P 1

abc,f ⊃ P 2
abc,f ⊃ · · · ⊃ P n−5

abc,f ⊃ Pab.
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The facet inequalities we describe in the above proof are equivalent to the triangular
inequalities of Proposition 3 in [CLPSG12]. This connection does raise the question of
whether other inequalities in that paper can lead to facets of the BME polytope.

Note that the dimension of a general face corresponding to an intersecting pair of
cherries is greater than the dimension of the clade-face for the clade that is one of those
cherries. We conjecture based on initial experiments (verified by polymake for n=6)
that in fact the dimension is

(

n

2

)

−n−1, implying that these intersecting-cherry faces are
indeed facets. We also leave for the future the investigation of other sorts of intersecting
sets of clades: we conjecture that two or three or more clades, of various sizes and tree
geometry, intersecting in various ways, will lead to further faces and facets of Pn.

5. Facets from free cyclic orderings.

A free circular permutation (or free cyclic ordering, or necklace) of the elements of
S is only distinguished by which elements are adjacent. It is an arrangement of the
elements of S around a circle, which may be rotated or flipped. We are interested in
the binary trees on S which are coplanar with a certain free cyclic ordering on S. That
is, having drawn one of the two planar versions of the cyclic ordering, we can then draw
the tree in the same plane, as in Figure 7. The number of trees coplanar with the free
cyclic ordering is found by a simple counting argument for n = 5 : there are 5 choices
for the first cherry and the two for the second cherry; but then we divide by two since
the order we choose the cherries in is irrelevant, giving us five total trees.

Theorem 5.1. For each free cyclic ordering N on S with |S| = 5 there is a facet of
P5 that is equivalent to a 4-simplex, whose five vertices correspond to trees that are
coplanar with the free cyclic ordering.

Proof. The trees which are coplanar with N = (a, b, c, d, f) satisfy xab + xbc + xcd +
xdf + xfa = 13. That is because two cherries are represented by those components, and
the remaining components are assigned values 2, 2 and 1 respectively. All other trees
in P5, not coplanar with N , obey xab + xbc + xcd + xdf + xfa < 13. That is because at
most one cherry can be among those components, and the rest of the components then
can at most be assigned the value 2. Thus the components add up to at most 12.

Thus our five trees constitute the vertices of a face of P5. We show that this is a facet,
with dimension equal to 4, by establishing within it a flag of length 5. We can proceed
starting with any vertex and edge, since any pair of vertices have an edge between them.
Our flag chosen for the purposes of this proof is shown in Figure 8, left to right with
the vertex and edge first. The set of three vertices makes a triangular face of the facet
since they obey the equality xbf = 1 while the other two vertices have xbf > 1. The set
of four vertices make a 3-simplex since they all obey the equality xbf + xbd + xac = 4,
while the final vertex has xbf + xbd + xac > 4.

�

The number of free cyclic orderings on 5 objects is 4!/2 = 12. Via polymake we see
that there are exactly 12 facets of P5 that have 5 vertices. Thus we have accounted for
all of these facets with free cyclic orderings.
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6. Facets from Caterpillars.

The third type of facet for P5 corresponds to a choice of two elements of S. These are
placed as leaves on a tree that are as far apart as possible: in this case a distance of 3
internal nodes on a binary caterpillar. Thus there are six ways to place the remaining
three elements of S as the other three leaves, and the caterpillar facet has 6 vertices.

Theorem 6.1. Each pair of elements a, b from S with |S| = 5 determines a facet of P5

whose vertices are trees that have a and b as leaves of distinct cherries.

Proof. The result follows from the general Theorem 6.3 which establishes the fact for
all dimensions. Specifically, each tree that has the elements a and b separated by 3
internal nodes has corresponding vector that obeys xab = 1. All other trees, which do
not have this property, obey xab > 1. The flag of length 5 which establishes that the face
in question is indeed a facet is described inductively in the proof of Theorem 6.3. �

The number of these facets in P5 is
(

5
2

)

= 10. Note that now we have described
30 + 12 + 10 = 52 facets of P5, the total number predicted by polymake. The three
classes of facets do not intersect for n = 5: that is, a caterpillar facet cannot be

a

b

a

b

a

b

a

b

a

b

c

df

c

df

c

df

c

df

c

df

Figure 7. A generic facet of P5 based on a free cyclic ordering (a, b, c, d, f).
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an intersecting cherry facet (nor vice-versa), since the collection of caterpillar trees is
determined by choosing two leaves to be as far apart as possible, while the intersecting
cherry trees allow any two leaves to be closer than the maximum distance.

Theorem 6.2. The caterpillar facets of P5 are combinatorially equivalent to the Birkhoff
polytope of dimension 4.

Proof. This fact was first verified by polymake, where the isomorphism of vertices may
be seen as preserving vertex-facet incidence. Since all the caterpillar facets are com-
binatorially equivalent by a common permutation of the coordinates, checking one is
sufficient for checking all. We illustrate the isomorphism by showing the two Schlegel
diagrams in Figure 9. �

The generalization of this caterpillar facet for any size set S has vertices any collection
of trees with leaves S that are all binary caterpillars, with a pair of chosen species as
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b
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b
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df
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b

a

b

a

b

a

b

a

b

a

b

a

b

c

df
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df

c

df

c

df

c

df

c

df

c

df

c

df

c

df

c

df

c

df

c

df

c

df

c

df

x   + x   + x   = 4
bf           bd          ac

x    = 1
bf 

Figure 8. Left to right these columns show the sets of trees in faces
that form a flag of a facet of P5 based on a free cyclic ordering (a, b, c, d, f).
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the two which must reside as far apart as possible–as leaves of the only two distinct
cherries. These faces are indeed facets of Pn, each with (n − 2)! vertices. In general

1 0 0

0 1 0

0 0 1

1 0 0

0 0 1

0 1 0

0 1 0

1 0 0

0 0 1

0 1 0

0 0 1

1 0 0 0 0 1

1 0 0

0 1 0

0 0 1

0 1 0

1 0 0
[          ]

[          ]

[          ]

[          ]
[          ]

[          ]

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1

2 3

4

5

1

2

3

4

5

1

2 3

4

5

Figure 9. On the top is the Birkhoff polytope B(3) with vertices labeled
by the permutation matrices. On the bottom is a facet of P5 with each
vertex labeled by the tree corresponding to the permutation matrix in
the corresponding position.
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they are not equivalent to the Birkhoff polytope B(n − 2), since for n > 5 the facets
of Pn have a dimension

(

n

2

)

− n − 1 which is greater than (n − 3)2 (the dimension of
B(n− 2).) However an interesting projection is suggested by the 4-dimensional case in
Figure 9, where a permutation matrix corresponding to permutation σ is mapped to the
tree with leaves 3,4, and 5 in the order σ(3), σ(4), σ(5). We leave as an open question,
for instance, whether this map in the general case gives rise to a cellular projection to
the Birkhoff polytope from facets of the balanced minimal evolution polytope.

Theorem 6.3. Consider the set of binary caterpillar trees on n leaves S with a given
pair from the set S as maximally separated leaves. The vertices of Pn calculated from
these caterpillar trees are the vertices of a facet of Pn.

Note that the number of these facets in Pn is
(

n

2

)

for n > 4. For n = 4 there are
half that many, the three edges of the triangle in Figure 2, since having chosen two
elements of S to be placed in the distinct cherries we automatically determine the other
two elements which will also be placed in distinct cherries: in the notation of the proof
that follows we have for instance that P 4

12 = P 4
34.

Proof. of Theorem 6.3 For the purposes of this proof we choose the set S = [n] and
without loss of generality we let the two fixed leaves with maximal distance n−2 between
them be the leaves labeled 1 and 2. We’ll continue by choosing leaves in counting order:
this will be without loss of generality since any other selection of leaves is covered by
choosing an appropriate ordering.

Thus the caterpillar trees with fixed leaves 1 and 2 obey x12 = 1, and all other points
in Pn obey x12 > 1. We call this face P n

12. Next we use induction on n, the number of
leaves, to show that the face P n

12 is in fact a facet, of dimension
(

n

2

)

−n−1. The strategy
is to show existence of a flag of Pn beginning with P n

12 and ending with a single vertex,
which has total length

(

n

2

)

− n. We start with a chain of sub-faces of P n
12 which has

length n − 2, including P n
12 itself. Then we show a final sub-face which has the same

dimension as P n−1
12 , thus inductively of dimension

(

n−1
2

)

− (n− 1)− 1. Thus the entire

flag is of length
(

n−1
2

)

− (n− 1) + n− 2 =
(

n

2

)

− n.
The base case of our induction is n = 4. See Figure 2 where each edge of the triangle

is a facet of this type. Specifically, the edge P 4
12 is at the bottom of the triangle.

After P n
12 the largest face in our flag is the one whose vertices are described as vertices

of P n
12 whose caterpillar tree is one of two types, as seen in Figure 10. The tree has a

third fixed leaf, say the leaf labeled 3, either in the same cherry as the leaf 1; or as the
leaf nearest that cherry but not in it. We call this face P n

12,3, and note that it contains
2((n− 3)!) vertices. To see that it is indeed a face, we show that its vertices obey the
equation

x13 + 2n−4

(

n
∑

i=4

(x1i − x3i)

)

= 2n−3.

...and that all other vertices in P n
12 obey the inequality:

x13 + 2n−4

(

n
∑

i=4

(x1i − x3i)

)

> 2n−3.
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First, the vertices of P n
12 whose caterpillar tree has the leaf labeled 3 in the same

cherry as the leaf 1: for these the difference x1i − x3i = 0 for each i, while x13 = 2n−3.
For the vertices that have leaf 3 as the leaf nearest the cherry containing leaf 1, but not
in it: x13 = 2n−4 and the sum of differences telescopes and simplifies to equal 2n−n = 1.
The equality holds since 2(2n−4) = 2n−3.

Any other leaf of P n
12 not in P n

12,3 has leaf 3 even further from the cherry containing

leaf 1. Now the sum of differences will telescope and simplify to become 1+2+ · · ·+2j

where j is the number of leaves further (than 1) from the cherry that leaf 3 is found.
Since the latter sum is larger than 2, the left side of our inequality is greater than 2n−3.

Next we describe a sequence of n − 4 nested faces (of steadily smaller dimension)
labeled P n

12,34, P
n
12,345, . . . , P

n
12,345...k for k = 4 . . . n− 1. The vertices of P n

12,34 (the first in
this series, with largest dimension) are vertices of P n

12,3 which either have leaf 3 in the
cherry with leaf 1, or have leaf 4 in the cherry with leaf 1. After that, for k > 4 the
vertices of P n

12,34...k are vertices of P n
12,34...(k−1) with either leaf 3 in the cherry with leaf

1 or leaf 4 in the cherry with leaf 1 and leaves 5 . . . k in that order immediately on the
other side of leaf 3. See Figure 10.

First we show that the vertices of P n
12,345...k obey the equality:

2n−kx13 + 2n−4

(

k
∑

i=4

(x1i − x3i)

)

= 2n−32n−k.

Consider the vertices of P n
12,345...k whose caterpillar tree has the leaf labeled 3 in the same

cherry as the leaf 1: for these the difference x1i − x3i = 0 for each i, while x13 = 2n−3.
For the vertices that have leaf 3 as the leaf nearest the cherry containing leaf 1, but
not in it: x13 = 2n−4 and the sum of differences telescopes and simplifies to equal 2n−k.
The equality holds since 2(2n−4) = 2n−3.

To check for the needed inequalities we begin with k = 4. We show that the vertices
of P n

12,3 which are not in P n
12,34 obey the inequality:

2n−kx13 + 2n−4

(

k
∑

i=4

(x1i − x3i)

)

< 2n−32n−k.

For k = 4, and since these trees have leaf 3 as the leaf nearest the cherry containing
leaf 1, but not in it, and leaf 4 also not in that cherry, this inequality becomes:

2n−42n−4 + 2n−4 (x14 − x34) < 2n−32n−4.

This inequality holds since x14 − x34 < 0, and so 2n−4 + (x14 − x34) < 2n−4 < 2n−3,
which leads to the desired inequality.

Now, for k > 4, we need to show that the vertices of P n
12,3...k−1 which are not in P n

12,3...k

obey the inequality:

2n−kx13 + 2n−4

(

k
∑

i=4

(x1i − x3i)

)

> 2n−32n−k.



BME FACETS 19

Since these trees have leaf 3 as the leaf nearest the cherry containing leaves 1 and 4,
this inequality becomes:

2n−k2n−4 + 2n−4

(

k
∑

i=4

(x1i − x3i)

)

> 2n−32n−k.

Since leaf k is at a position farther from leaf 1 than if the tree was in P n
12,3...k, then

the sum of differences telescopes and simplifies to 2n−k+1 − 2x where x < n − k. Thus
x− (n− k) < 0 and it is clear that 1 + 2− 2x−(n−k) > 2. Therefore:

2n−k2n−4 + 2n−42n−k(2− 2x−(n−k)) > 2n−32n−k,

which is the simplified inequality we needed to show.
Finally we reach the subface called P n

123, which consists of the vertices of P n
12,345...n−1

which have leaf 3 in the same cherry as leaf 1. That of course means they are only
of the first type. They constitute a subface, since they obey the additional equality
x13 = 2n−3, while the other vertex of P n

12,345...n−1 obeys x13 = 2n−4 < 2n−3. We check

that this face P n
123 projects to P n−1

12 , which as discussed above will give us the correct
number of remaining faces of our flag, by induction. The linear projection is described
by its action on the

(

n

2

)

coordinates, yielding
(

n−1
2

)

new ones; thus it is given by an
(

n−1
2

)

×
(

n

2

)

matrix A, which has rows and columns labeled by the respective coordinates
in lexicographic order.

First each coordinate involving leaf 3 (so xi3 or x3i) is discarded. That means the
columns of A corresponding to these coordinates are made up of zeroes. Second, the
coordinates that involve leaf 1 (so xi1 or x1i) are multiplied by 1, but sent to the
new coordinates with the same label if i = 2, or to the coordinates x(i−1)1 or x1(i−1)

respectively if i ≥ 4. Thus the columns of A corresponding to these coordinates have a
single entry of 1 in the row corresponding to the new coordinate. Finally the coordinates
xij involving neither leaf 1 nor leaf 3 are multiplied by 1/2 and sent to the new coordinate
xi′j′ where i

′ = i−1 for i > 2 and i′ = i for i = 2; and likewise for j′. Thus the columns of
A corresponding to these coordinates have a single entry of 1/2 in the row corresponding
to the new coordinate. For instance here is the matrix A for n = 5; it takes the two
sample vectors listed in Figure 3 (the two vertices of the lowest edge in Figure 9) to the
two vectors labeling the lower edge of the triangle in Figure 2.

A =















1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1/2 0 0 0 0
0 0 0 0 0 0 1/2 0 0 0
0 0 0 0 0 0 0 0 0 1/2















We claim that the image of P n
123 under A is the polytope P n−1

1,2 . This follows from the
fact that the projection A induces a 1-1 and onto mapping between the vertices of the
two polytopes. Since there are (n−3)! vertices of each polytope, the surjective property
of the mapping implies that it is a bijection. We can easily describe the preimage of
a vertex in P n−1

12 : take its caterpillar tree, attach a new branch as close to leaf 1 as
possible, and give it leaf 3. Then add 1 to increment each of the other leaves except for
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leaf 2. The resulting new tree has the coordinates required. The coordinates involving
leaf 3 will be discarded, so their value can be ignored. The leaves in our new tree are
all now one node further away from leaf 1, but using the new total number of leaves n
this difference is canceled. The coordinates involving neither leaf 1 nor leaf 3 are the
same except for the factor of 2.

�
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Figure 10. Each set is the collection of trees (vertices of Pn) that have
any placement of the remaining labels from S = [n] into the blank leaves
shown. The containment of sets also shows the flag of our facet P n
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containment is P n

12 ⊃ P n
12,3 ⊃ P n

12,34 ⊃ P n
12,345 ⊃ · · · ⊃ P n

12,345...n−1 ⊃ P n
123.

Note that the next to last set also has leaf n fixed since there is only one
place for it, and the last set (bottom right) is the set of vertices of Pn

which label a face that projects to the facet P n−1
12 .
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