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Abstract. Balanced minimum evolution is a distance-based criterion for the reconstruction
of phylogenetic trees. Several algorithms exist to find the optimal tree with respect to this
criterion. One approach is to minimize a certain linear functional over an appropriate poly-
tope. Here we present polytopes that allow a similar linear programming approach to finding
phylogenetic networks. We investigate a two-parameter family of polytopes that arise from
phylogenetic networks, and which specialize to the Balanced Minimum Evolution polytopes as
well as the Symmetric Travelling Salesman polytopes. We show that the vertices correspond
to certain level-1 phylogenetic networks, and that there are facets or faces for every split. We
also describe lower bound faces and a family of faces for every dimension.

1. Introduction

Phylogenetics is the theory and practice of using available genetic data to reconstruct the
past. Given DNA from a set of taxa (individuals, species, or specific genes) we want to infer the
ancestral relationships that existed, or rather were most likely to have existed. Most typically
the result of such a study is a biological family tree, or phylogenetic tree. Nature, however,
is not constrained to tree-like branching alone. Events such as horizontal gene transfer and
hybridization result in the rejoining of branches, called reticulation. Biologists refer to this
more general situation as a phylogenetic network.

Our main results herein are geometric, but they underlie a program of phylogenetic recon-
struction using polytopes. A polytope is a well-defined multifaceted convex shape, bounded
by linear inequalities. These shapes generalize polygons (2D) and polyhedra (3D) to all di-
mensions. An n-dimensional polytope has (n− 1)-dimensional facets, and faces of all smaller
dimensions. A polytope can be described by its bounding inequalities, or equivalently by its
extreme corner points, or vertices. It is the intersection of the halfspaces given by its facet-
defining inequalities, and it is the intersection of all convex sets which contain its vertices (the
convex hull). Lower bound and upper bound inequalities give the least and greatest attainable
values of the vector components of the vertices. Given a polytope P in Rn and any vector
x ∈ Rn, that vector can be used as the coefficients of (parallel, affine) linear inequalities. If
(and only if) some vertices of P obey such a linear inequality sharply (by equality), while all
other vertices obey it strictly, then (1) that inequality defines a face of P containing those
vertices, (2) the vector x is normal to that face, and (3) the linear functional defined by x (the
dot product with x) is either minimized or maximized over P at the vertices of that face.

Mathematically, as described in Steel [2016], a phylogenetic network N is a directed, acyclic,
simple, connected graph, with n nodes of in-degree one labeled by the taxa [n] = {1, . . . , n}.
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Figure 1. The directed phylogenetic network on the left is level-2, and has two
biconnected components, along with the leaves. In the center is its underlying
undirected network, which is 4-nested: for instance the edge labeled (a) is in 4
distinct undirected cycles. On the right is a binary level-5 network, which has a
13-nested underlying network.

(Acyclic means that there are no directed cycles, while simple means there are no multi-edges.)
One node of N is the only source, with in-degree 0. This node is the root, or common ancestor.
(In applications the root is often determine via attachment to a leaf which is an intentionally
chosen unrelated outgroup.) The degree 1 nodes of N are the the only sinks, (with in-degree 1
and out-degree 0). These are the leaves, or extant taxa. All the non-leaf, non-root nodes are
required to have total degree ≥ 3. Reticulation nodes are those with in-degree > 1. We focus
in the current paper on the unrooted or undirected phylogenetic networks, which have non-
oriented edges, and thus no root. They still have n labeled degree 1 leaves, and all other nodes
of degree ≥ 3. In application these underlie directed networks with reticulation, or they can
capture the options of an ambiguous ancestry. A binary phylogenetic network is required to
have all its non-root, non-leaf nodes of degree exactly 3. We also rule out isolated triangles: the
biconnected components of our networks N herein never have exactly 3 nodes. (A biconnected
component is a subgraph which stays connected even after removal of any one edge.) Examples
are in Fig. 1.

Phylogenetic networks vary in complexity, from the phylogenetic trees to the maximum level
of connectedness in a complete graph. A commonly used gauge of complexity is level. A
level-k directed phylogenetic network N has in each biconnected component a maximum of
k reticulation nodes. For undirected networks the closest related concept is nestedness, as
defined by Gambette et al. [2017a]. A k-nested network has a maximum of k cycles containing
any one edge. (Cycles here are undirected and have no repeated nodes.) Usually, a level-k
directed network will have a j-nested underlying undirected network with j ≥ k. However,
since a directed level-1 binary network has an underlying undirected graph with at most 1
cycle containing any given node, undirected 1-nested binary networks are often called level-1
binary as well. Trees, directed or not, are level-0, since they are cycle-free.

Here we show how to organize specified collections of phylogenetic networks by assigning
networks to the vertices and faces of polytopes. The value of such an organization is that there
are well known algorithms of linear programming (as in the simplex method, and the branch
and cut algorithms) which can take advantage of knowing the bounding inequalities in order to
find the optimal vertex of a polytope. For us, optimizing means finding the network that best
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fits the data according to the balanced minimum evolution criterion. In future work we plan
to test out these algorithms for networks; in this paper we establish the underlying geometry.
Prior work includes the branch and bound algorithms for phylogenetic trees as described in
Catanzaro et al. [2012] and Catanzaro et al. [2015], as well as a version using splits in Forcey
et al. [2018].

2. Overview

In balanced minimum evolution (BME) methods we try to minimize the total branch length
of a candidate phylogenetic tree for a given discrete metric. The BME method can be described
as a linear programming problem. The convex hull of solutions for this problem, given n taxa,
is the

(
n
2

)
− n dimensional polytope BME(n). In this paper we present a generalization of the

BME polytopes which allows the solutions to be phylogenetic networks rather than trees.
The main results in this paper are theorems about the convex polytopes we define, denoted

BME(n, k) for all 0 ≤ k ≤ n − 3. We prove that their vertices correspond bijectively to
binary level-1 phylogenetic networks with n leaves and k non-trivial bridges, in Theorem 5.1,
Theorem 5.2, and Corollary 5.3. In Theorem 5.9 we find a formula to count the vertices:(

n− 3

k

)
(n+ k − 1)!

(2k + 2)!!
.

Section 3 contains the basic definitions we need. In Section 4 we define and compare the new
polytopes to well-known families: the symmetric travelling salesman polytopes (STSP) and
the balanced minimum evolution polytopes. Ours are nested inside the STSP and outside the
BME polytopes (after scaling) as shown in Theorem 5.7. In Section 5 we describe a good deal
of the facial structure of our new polytopes. Every less-refined phylogenetic network turns out
to correspond to multiple faces: one in each polytope with vertices which refine that network.
See Theorem 5.5 for details. In Section 6 we show that some of these faces are actually facets,
specifically those corresponding to splits as shown in Theorem 6.1. We also describe lower
bound faces in Theorem 6.2. Finally in Section 7 we describe further results about the specific
case of networks with five leaves and a single bridge. We give a complete classification of the 62
facets in this case, in Theorem 7.1, Theorem 7.2, Theorem 7.3, and Theorem 7.4. In Section 8
we preview the potential of our polytopes (and their relaxations, as mentioned in Theorem 8.1)
in linear programming algorithms.

Some of the results in this paper, with abbreviated proofs, were announced in the extended
abstract Devadoss et al. [2019], in the proceedings of FPSAC’19. Some of the definitions were
also repeated there, for completeness. We thank Satyan Devadoss for collaboration on that
extended abstract, and conversations about the work in this paper. We also thank the referees
for excellent suggestions on an earlier version.

3. Basics

A slightly abbreviated version of the definitions in this section is included in Devadoss
et al. [2019]. We include them here in order to be self-contained. We begin with the set
[n] = {1, 2, ..., n}, in which the integers 1 through n stand for biological taxa. We often also
are given a non-negative real-valued pairwise distance function d, (also known as a dissimilarity
matrix), with outputs (entries) denoted dij = d(i, j) for each pair of taxa i, j ∈ [n]. (Note that
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d can also be described as a discrete metric, or a distance vector.) We try to find an appropriate
combinatorial structure to display that data. The structures we directly consider here are split
networks and phylogenetic networks. We will restrict to the unrooted versions, and focus on
specializations of one or both structures such as: phylogenetic trees, circular split networks,
level-1 and 1-nested phylogenetic networks.

The simplest structure we consider is an (unrooted) phylogenetic tree. Mathematically this
is a graph with no cycles, and with no nodes of degree 2. The nodes with degree larger than 2
are unlabeled, but the n leaves are labeled bijectively with our n taxa. There is also an option
of assigning non-negative lengths to the edges of the tree. The appropriateness of this data
structure is clear when the edge-lengths along the path between two leaves i and j sum to the
given distance dij between those leaves. In fact, if our given pair-wise distances allow such a
representation then the weighted tree is unique.

A split system is a more general data structure, (which specializes to a phylogenetic tree).
A split of our set is a partition A|B of [n] into two parts. When one part has cardinality 1 we
call the split trivial. A split system s on [n] is any collection of splits which contains all the
trivial splits. We say a split system s′ refines s when s′ ⊃ s. A split network is a graphical
representation of a split system. It is a special connected simple graph. The n taxa are again
seen as the labeled leaves (degree 1 vertices). Each split is represented by a set of parallel
edges which is a minimal cut of the graph; that is, removing that set of edges separates the
graph into two components, whose respective leaves are the parts of the split. Sometimes there
are (nontrivial) splits represented by a single edge. We call these edges (nontrivial) bridges. A
phylogenetic tree is a special split network. Its splits are all bridges. Upon removing a bridge
the leaves of the resulting disconnected components are the parts of the split. The two parts
of each split are called clades. We say that the tree displays those splits.
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Figure 2. A circular split system s, in the center (trivial splits not shown),
with its circular split network on the left, and its polygonal representation
on the right. This split network has one non-trivial bridge, giving the split
{1, 2, 6, 7}|{3, 4, 5}. The split network is externally refined, so no bridges can be
added.

A circular split network is one whose graph may be drawn on the plane without edge
crossings, and with its leaves all on the exterior of the diagram. The terminology is due to
the fact that any such drawing automatically produces a circular ordering of the leaves. Note
that these drawings are not fixed in the plane—twisting around a bridge gives a different
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diagram but represents the same split network. As shown in Devadoss and Petti [2017], there
is an equivalent dual polygonal representation of any circular split network: Given a circular
split system with a circular ordering c of the species, consider a regular n-gon, with the edges
cyclically labeled according to c. For each split, draw a diagonal partitioning the appropriate
edges; see Fig. 2. Note that splits which require multiple parallel edges in the the network
picture correspond to diagonals that are crossing (they intersect other diagonals in the picture)
and that bridges become noncrossing diagonals.

Definition 3.1. An externally refined split network s is such that there is no split network s′

both refining s and possessing more bridges than s.

In the polygonal representation of an externally refined split network there are no non-
crossing diagonals that can be added; that is, any additional split added to the network s will
correspond to a diagonal that intersects existing diagonals. An externally refined phylogenetic
tree has non-leaf nodes that are all of degree three; this is usually referred to as a binary, or
bifurcated tree.

The following definitions are from Gambette et al. [2017a] and Gambette et al. [2017b]. Those
authors use the term uprooted phylogenetic network to refer to what Steel [2016] calls unrooted
phylogenetic networks. That is due to the overuse of the term: split networks themselves have
been called unrooted phylogenetic networks as well, as in Levy and Pachter [2011]. In addition
to requiring that the non-leaf nodes have degree larger than 2, Gambette et al. [2017a] require
every cycle to be of length at least four. If every edge is part of at most one cycle then the
network is called 1-nested. If every node is part of at most one cycle, the network is called
level-1. If that is true and all the unlabeled non-leaf nodes also have degree three, then the
network is called binary level-1. Level-1 networks, as a set, include level-0 networks, which are
the phylogenetic trees. The level-1 and 1-nested networks are special versions of galled trees,
(which sometimes allow cycles of length three as in Semple and Steel [2006]), and of cactus
models (which allow labels for non-leaves as in Brandes and Cornelsen [2009]).

Notice that a phylogenetic tree is both a split network and a level-0 phylogenetic network. In
contrast to split networks, phylogenetic networks do not have parallel sets of edges, but sets of
edges are still used to represent splits. A minimal cut C of a phylogenetic network is a subset of
the edges which, when removed, leaves two connected components. The edge set is minimal in
the sense that no more edges are removed than is necessary for the disconnection. The split A|B
displayed by such a cut is the pair of sets of leaves of the two connected components. A split
A|B is consistent with a phylogenetic network if there is a minimal cut C(A|B) displaying that
split. A split system s is consistent with a phylogenetic network if all its splits are consistent.
The (maximal) system of all consistent splits for a phylogenetic network N is called Σ(N). In
Fig. 3 we show a binary level-1 network N , and the associated maximal split network Σ(N).
Multiple different phylogenetic networks can map to the same split system under the mapping
Σ.

There is an even closer relationship between level-1 (and thus 1-nested) networks and circular
split networks. In Gambette et al. [2017a] it is shown that a split network s is circular if and
only if there exists an unrooted level-1 network N such that s ⊂ Σ(N). For instance the split
network s in Fig. 2 has splits a subset of those in Σ(N) seen in Fig. 3.

If s is a circular split system then there is a simple way to associate to s a specific 1-nested
phylogenetic network denoted as L(s).



6 CASSANDRA DURELL AND STEFAN FORCEY

1 2

7
6

3

5

1

2

3

45

6

7

3

4
5

1 2

6

7
4

N = L(s) Σ(N)

Figure 3. A level-1 phylogenetic network N with its associated maximal cir-
cular split system Σ(N), shown both as a network and polygonal representation.
Here N is the image L(s) for s the split network in Fig. 2.

Definition 3.2. Construct this network L(s) as follows: begin with a split network diagram of
s and consider the diagram as a planar drawing of its underlying planar graph, with leaves on
the exterior. Then 1) delete all the edges that are not adjacent to the exterior of that graph,
and 2) smooth away any resulting degree-2 nodes.

See s in Fig. 2 and L(s) in Fig. 3. We see that L(s) displays all the splits of s, and has the
same bridges as s. Explicitly, any bridge of s is displayed by a bridge in the image, and any
other split in s by a pair of edges in a cycle of L(s). Refinement is seen easily in the pictures of
split networks, by collapsing parallel sets of edges or by removing diagonals from the polygon.
The function L preserves refinement in phylogenetic networks. See Fig. 4 for examples. If s
is an externally refined split network then L(s) is a binary level-1 phylogenetic network. Note
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refines t′′. Also Σ(L(t′′)) ⊂ Σ(L(t′)) ⊂ Σ(L(t)) ⊂ Σ(L(r)).
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that in Gambette et al. [2017a] the authors define a similar function called N . Their function
is equivalent to ours, if the definition in Gambette et al. [2017a] is modified so as not to depend
on k-marguerites.

4. Polytopes

A circular ordering c of [n] is consistent with a circular split system s if a planar network
of s may be drawn, such that the leaves lie on the exterior in the order given by c. Similarly
a circular ordering c is consistent with a level-1 phylogenetic network N if a planar diagram
of N may be drawn, such that the leaves lie on the exterior in the order given by c. Thus a
circular ordering c is consistent with s if and only if c is consistent with L(s).

We define new families of polytopes by assigning vectors to each externally refined circular
split network s, and thus to each binary level-1 phylogenetic network.

Definition 4.1. The vector x(s) is defined to have lexicographically ordered components xij(s)
for each unordered pair of distinct leaves i, j ∈ [n] as follows:

xij(s) =

{
2k−bij if there exists c consistent with s; with i, j adjacent in c,

0 otherwise.

where k is the number of bridges in s and bij is the number of bridges crossed on any path
from i to j.

The formula for x(N) works just as well when N is a binary level-1 network. Indeed, we
clearly have for any externally refined circular split network that

x(L(s)) = x(s).

The vector is determined entirely by the number and placement of the bridges. Thus two split
systems with the same associated binary level-1 network will have the same vector x. Therefore
we will often use x(L(s)) interchangeably with x(s), for s any preimage of L(s).

Definition 4.2. The convex hull of all the vectors x(s) for s any externally refined circular
network with n leaves and k nontrivial bridges is the level-1 network polytope BME(n, k).
(The set of vectors is the same as the collection x(N) for N any binary level-1 network with n
leaves and k nontrivial bridges.)

Before proving theorems about these newly discovered level-1 network polytopes, we relate
them to well-known examples. We begin with a review of the Balanced Minimal Evolution
Polytopes BME(n), and the Symmetric Travelling Salesman polytopes STSP(n). The BME
polytopes were first studied in Eickmeyer et al. [2008]. We have found a simple description of
the vertices as follows:

Definition 4.3. For each given binary phylogenetic tree t with n leaves and k = n − 3 (non-
trivial) bridges, the vertex vector x(t) has

(
n
2

)
components

xij(t) = 2k−bij

where bij is the number of nontrivial bridges on the tree from leaf i to a different leaf j.
The convex hull of all the (2n − 5)!! vertex vectors (for all binary trees t with n leaves), is

the polytope BME(n), of dimension
(
n
2

)
− n.
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Figure 5. Calculating some vectors x(s).

Note that in Forcey et al. [2016] the formula is given, equivalently, as xij(t) = 2n−2−lij where
lij is the number of internal nodes along the path from i to j.

4.1. Facets of BME(n). The (lower-dimensional) clade faces of BME (n) were described in
Haws et al. [2011]. Recently we have discovered large collections of (maximum dimensional)
facets for all n, in Forcey et al. [2016] and Forcey et al. [2017]. In the following list we review
our new facets, and show their statistics in Table 1.

(1) Any split A|B of [n] with m = |A|, p = |B| and both parts m, p ≥ 3 corresponds to a
facet of BME(n), with vertices all the trees displaying that split.

(2) A cherry is a clade with two leaves. For each intersecting pair of cherries {a, b}, {b, c},
there is a facet of BME(n) whose vertices correspond to trees having either cherry.

(3) For each pair of leaves {i, j}, the caterpillar trees with that pair fixed at opposite ends
constitute the vertices of a facet. These bound BME(n) from below.

4.2. STSP. Next we recall the travelling salesman polytopes. We consider symmetric tours
(circular orderings of the n taxa). These can be pictured as placing the numbers in order
on a circle in which the orientation is not specified—reading around the circle clockwise or
counterclockwise gives the same circular ordering.

Definition 4.4. For each circular ordering c on the set [n], the incidence vector x(c) has
(
n
2

)
components. The components are

xij(c) =

{
1 if i and j are adjacent in c

0 if not.
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The Symmetric Traveling Salesman Polytope, denoted as STSP(n), is the convex hull of

these (n−1)!
2

vertex vectors. It has dimension
(
n
2

)
− n.

The two best-known sets of facets of the STSP are the subtour-elimination facets and the
lower bound facets. The latter are given by the inequalities xij ≥ 0. Subtour-elimination
facets correspond to any nontrivial split A|B of [n]. The circular orderings which make up the
vertices of such a facet are those which contain the elements of A as a contiguous list, and thus
B likewise. There can be only two connecting edges between the parts of the splits. Requiring
that tours be Hamiltonian means that there must be at least two such connecting edges in any
tour, which eliminates the possibility of a subtour through one or the other. Thus for a given
split, a facet defining inequality is ∑

i∈A,j∈B

xij ≥ 2.

We show an alternate inequality in Theorem 13. (Recall that the STSP is of smaller dimension
than its ambient space, allowing choices of inequality for all its faces.)

Clearly the three definitions 4.1, 4.3, and 4.4 of x(s) agree when their input structures over-
lap. Circular orderings (seen as unicyclic level-1 networks) have no bridges, so when leaves
are adjacent the exponent becomes 0. Trees (seen as networks) allow any two leaves to be
adjacent, so the components of x are all nonzero in that case. Thus we see that restricting
BME(n, k) to the phylogenetic trees, where k = n − 3, recovers the polytopes BME(n). Re-
stricting BME(n, k) to the fully reticulated networks, where k = 0, recovers STSP(n). Next
we characterize the vector x from a combinatorial viewpoint.

Theorem 4.5. For any externally refined circular split network s with k bridges, we have

x(s) =
∑

c consistent
with s

x(c)

where the sum is over the exactly 2k circular orderings c consistent with s. Equivalently the
component xij(s) is the number of circular orderings consistent with that network for which i
and j are adjacent.

facets facet inequalities number of number of
of BME(n) facets vertices

in polytope in each facet

Caterpillar xab ≥ 1
(
n
2

)
(n− 2)!

intersecting- xab + xbc − xac ≤ 2n−3 (
n
2

)
(n− 2) 2(2n− 7)!!

cherry

(m, 3)-split, m ≥ 3 xab + xbc + xac ≤ 2n−2 (
n
3

)
3(2n− 9)!!

(m, p)-split A|B; m, p ≥ 3
∑
i,j∈A

xij ≤ (m− 1)2n−3 2n−1 −
(
n
2

)
− n− 1 (2m− 3)!!(2p− 3)!!

Table 1. Known facets for the BME polytopes, BME(n) = BME(n, n − 3).
The third is a special case of the fourth. The inequalities are given for any
a, b, c, · · · ∈ [n].



10 CASSANDRA DURELL AND STEFAN FORCEY

1 2

5 3

4

1 2

3 5
4

1 2

5 3

4

2 1

5 3
4

1 2

4 5

3

1 2

5 4

3

1 2

5 4

3

1 2

5 4

3

1 2

5 4

3

1 2

3 4

5

1 2

3 4

5

1 2

4 3

5

1 2

4 3

5

1 2

4 3

5 1 2

5 3

4

1 2

5 3

4

1 2

5 4

3

1 2

3 4

5

1 2

5 3

4

1 2

4 3

5

1 2

5 4

3

2 1

5 4

3

2 1

5 4

3
1 2

5 4

3

1 2

5 4

3

1 2

5 4

3

2 1

4 3

51 2

5 3

4

1 2

5 4

3

1 2

5 4

3

1 2

4 3

5

(a) (b)

(c)

 (2,1,0,1,1,0,1,2,0,2) 

1

2

5

3

4

1
2

3

5

4

 (1,1,0,0,0,0,1,1,0,1)

1 5

432

(4, 2, 1, 1, 2, 1, 1, 2, 2, 4)

4

5

3

2

1
 (2,2,0,0,0,1,1,1,1,2)

1

2

4

3

5
(2,1,1,0,1,1,0,0,2,2)  

1
2

4

3

5

(1,0,1,0,1,0,0,0,1,1)

(2,0,1,1,2,0,0,1,1,2)

4

5

3

1

2

1
2

5

3

4

(1,0,0,1,1,0,0,1,0,1)

1
2

3

4

5

(1,1,0,0,0,1,0,0,1,1)

Figure 6. A facet (a) in BME(5,0) = STSP(5) , a facet (b) in BME(5,1), and
a face (c) in BME(5,2) = BME(5). Summing either of the horizontal or vertical
pairs of vectors shown in (a) gives a corresponding vector shown in (b). Summing
all four vectors in (a) gives the vector shown in (c). Summing all four vectors in
(b) gives twice the vector in (c).

Proof. We show this equality by considering the sums of respective components. The compo-
nents of x(c) are always 1 or 0. Note that the only way to alter a circular ordering c which is
consistent with the externally refined s, to another such consistent c′, is to choose a nontrivial
bridge and twist the graph around that bridge. That is, we redraw the graph with one side of
the bridge reflected vertically; we call this twisting the bridge. The fact that there are exactly
2k circular orderings contributing over all is seen by independently twisting all k nontrivial
bridges–each bridge contributes two options. If c is a circular ordering consistent with s, and
further c has i and j adjacent, then the bridges between i and j cannot be twisted without
losing this adjacency. However, the other bridges (k − bij of them) may be independently
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twisted while preserving the adjacency of i and j. Thus each of those latter bridges contributes
a factor of 2 to the total count of the consistent circular orderings with i and j adjacent: upon
summing we thus achieve the defined value of xij = 2k−bij . Examples are seen in Fig. 6. �

Corollary 4.6. We can infer that for any network s the sum of all the components of x(s)
obeys

∑
xij = n2k.

Proof. The total follows from the fact that the sum of components for any tour on [n] is n, the
number of edges in the tour. �

Closely related is the following twisting lemma, useful in the next Section:

Lemma 4.7. Let s have at least one bridge b. Then there exist two ways to add a single split
to s, to achieve by those additions two split networks s′ and s′′ each with one less bridge than
s, and such that:

x(s) = x(s′) + x(s′′).

Proof. Notice that in the polygonal picture of a split network s with k+1 bridges, for any given
bridge b there is always a way to add a split, (as a new diagonal), which crosses that bridge
b but no other existing bridge. This is true since (even if the maximum number of bridges is
present), the bridge b can be seen as one of the two diagonals of a quadrilateral which is nested
inside the polygon. See Fig. 7. The other diagonal of that quadrilateral is, of course, missing—
so it is always available to become the new split which crosses b. That new diagonal crosses no
other bridge since a quadrilateral can have only two diagonals. We use this new diagonal to
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45
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43

6

7

s s’ s’’

b

Figure 7. Example of the three split networks described in Lemma 4.7.

reduce the number of bridges by one. We create s′ and s′′ as the two possible results of adding
that new split which crosses b, with and without a twist around b. From Theorem 4.5 we have
that x(s′) is the sum of the vectors x(c) for all the circular orderings consistent with s′, and
likewise for s′′. The key here is that the circular orderings consistent with s are partitioned
into those consistent with s′ and those consistent with s′′.

Thus the vector x(s) is the sum of the two vectors x(s′) and x(s′′).
�
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5. Metrics and faces

For our proofs about the structure of BME(n, k), we need weighted networks. A weighting
of a split system s is a function w : s → R≥0. In practice each split is assigned a positive
weight, since when splits are assigned weight = 0 this system can be equated to the system
minus those splits. Given such a weighted split system we can derive a metric ds on [n], where

ds(i, j) =
∑

i∈A,j∈B

w(A|B)

where the sum is over all splits of s with i in one part and j in the other. The metric is
often referred to as the distance vector ds. We can also derive a weighting on the edges of
the 1-nested network L(s), extending our function L to weighted networks. Here the weight
function is from the edges of L(s) to positive real numbers, and given by

ws(e) =
∑

e∈C(A|B)

w(A|B)

where the sum is over the splits of s which are represented by a minimal cut containing e.
Clearly the sum of weights on a shortest path in L(s) from i to j equals ds(i, j). See Fig. 8 for
an example.
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Figure 8. A weighted split network and its associated weighted level-1 net-
work. Here the trivial splits (edges adjacent to leaves) are all given weight 1 for
simplicity. The right-most picture is the same weighted network, with a tour
shown by arrows. The tour length is twice the total weight, 72.6.

We define the total weight of the network to be the sum of all the weights:

W (s) =
∑
A|B∈s

w(A|B).

Now we can still calculate x(s) for a weighted network, the vector does not depend on the
weights. Instead we are interested in the dot product:

Theorem 5.1. For an externally refined weighted split network s, and thus for the level-1
binary L(s), the dot product of our network vector with the distance vector gives a multiple of
the sum of the weights:

x(s) · ds = 2k+1W (s).

Proof. Since s is circular, given a network diagram for s, the distance ds(i, j) for adjacent i
and j can be found by adding the weights on edges between i and j on the exterior of the
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diagram. (That is also the same as the weights on the edges of L(s) between them). For a
circular ordering c that is consistent with the split system s we see that x(c) · ds is equal to
summing the distances between adjacent pairs of taxa, and that this sum includes the weight
of each split exactly twice: it totals to 2W (s). See Fig. 8 for an example. Since there are 2k

such circular orderings c (whose vectors sum to x(s), as shown in Theorem 4.5) we have that

x(s) · ds =
∑
c

x(c) · ds = 2(2k)W (s) = 2k+1W (s).

�

Theorem 5.2. If s′ is any other externally refined split network on [n] with k bridges, with
binary level-1 network L(s′) 6= L(s), then x(s′) · ds > x(s) · ds.

Proof. As just shown in the proof of Theorem 5.1, for any circular ordering c consistent with s,
we have that x(c) ·ds = 2W (s), which is the minimal length of a tour of [n] given the distances
in ds. Indeed it is a minimum length tour for the given metric ds, since visiting any of the taxa
out of this order would involve retracing some part of the path between them. This is most
clearly seen by considering the level-1 network L(s) with weighted edges, where the distance
between each pair is the minimum length path. See Fig. 8. The circular ordering minimizing
a tour length using those minimum length paths must be consistent with the network, or else
some portion of some path between leaves will be traversed twice, increasing the length of the
tour. Thus since the dot product x(c) ·ds is minimized for each consistent c, and x(s) ·ds is the
sum of those products as seen in Theorem 5.1, then the latter sum is minimized for the network
s. (The set of consistent circular orderings is determined uniquely by the network L(s), and
forming s′ by exchanging any c for a non-consistent alternative c′ would increase that term in
the sum.) �

The previous two results do have a geometric interpretation, which is:

Corollary 5.3. The vertices of BME(n, k) are the vectors x(s) corresponding to the distinct
binary level-1 networks L(s). That is for each externally refined circular network s, with n
leaves and k bridges, we get a vertex of the polytope (but it is determined only by L(s).)

Remark: Levy and Pachter [2011], generalizing the work of Semple and Steel [2004], define a
coefficient ηs which takes values the components of our vector x(s). For an arbitrary distance
vector d, Levy and Pachter call the dot product x(s) ·d the length of d with respect to s. They
point out that neighbor-net is a greedy algorithm for minimizing this quantity. Our results
show how to minimize this length via linear programming. We also see as a consequence that
that length is minimized precisely by a binary level-1 network, (or several if the number of
bridges is larger than k.)

The question is raised: if the vertices of BME(n, k) correspond to binary level-1 networks,
but minimize a length that is a function of the weighted split network, then what role is left
for an arbitrarily weighted 1-nested network? In fact, any weighted 1-nested network N has
the following property:

Theorem 5.4. If dN is the metric on the leaves of N defined by dN(i, j) equal to the least
sum of weights along a path between leaves i and j, then there is a unique circular weighted
split system s = Sw(N) which has the same associated metric. That is, dN = ds.
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Proof. First we show that dN obeys the Kalmanson condition: there exists a circular ordering
of [n] such that for all 1 ≤ i < j < k < l ≤ n in that ordering,

max{dN(i, j) + dN(k, l),dN(j, k) + dN(i, l)} ≤ dN(i, k) + dN(j, l).

The circular ordering that meets our specifications is just any choice of one of the circular
orderings consistent with N. The two paths involved on the right hand side of the condition
intersect each other while crossing. Then since the leaves are on the exterior, the four paths
involved on the left hand side of the condition are each bounded above in length by a path
made by following first one intersecting path and then the other, (switching at their shared
portion). Two paths in a sum on the left hand side of the condition can at most use exactly all
of both the crossing paths, so that the inequality is guaranteed. For example, in the following
network N we choose to look at the four taxa 1,2,8,7 in that order. The intersecting paths go
from 1 to 8 and 2 to 7, with lengths of 12 and 11 respectively. The graph edges used by the
crossing paths are highlighted. Notice that the shortest path from 1 to 2, length 9, is bounded
above by the path from 1 to 2 using highlighted edges. The other three paths, from 2 to 8,
from 8 to 7, and from 7 to 1, all actually use highlighted edges borrowed from the crossing
paths. In this case the inequality becomes max{19, 17} ≤ 23.
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It is well known that for any Kalmanson metric dN there exists a unique weighted split system
s whose weighting gives that metric: dN = ds. See Chapter 6 in Steel [2016]. To actually
calculate this split system, the algorithm neighbor-net can be used; since it is guaranteed to
return the unique answer for any Kalmanson metric, as shown in Bryant et al. [2007]. �

Now we show that for any 1-nested network, we get faces of our polytopes. In fact we
get multiple faces from each network: one in each of the polytopes BME(n, k) for which that
network has more bridges than k. Precisely:

Theorem 5.5. Every n leaved 1-nested network N with m bridges corresponds to a face Fk(N)
of each BME(n, k) polytope for 0 ≤ k ≤ m. That face has vertices all the binary level-1 k-bridge
networks N ′ whose splits refine those of N , that is such that Σ(N) ⊂ Σ(N ′).

Proof. Without loss of generality we choose a split network s which has the exterior form of
N, that is L(s) = N. Then for any N ′ as described in the theorem, we then have s ⊆ Σ(N ′).
Let s′ = Σ(N ′); since N ′ is binary, s′ is externally refined and L(s′) = N ′.

Next let s be weighted by assigning the value of 1 to each split. (Then W (s) is the total
number of splits in s). Let ds be the distance vector derived from that weighting, so that
the i, j component of ds is the number of splits between those leaves on s. We claim that the
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Figure 9. Demonstration of Theorem 5.5. Split networks on the bottom row
have all splits weight 1, except for the dashed splits which have weight 0.

dot product x(s′) · ds is minimized simultaneously at each of the externally refined k-bridge
networks s′ which refine s. In fact we have that the following inequality holds:

x(s′) · ds ≥ 2k+1W (s)

for all k-bridge externally refined networks s′, and is an equality precisely when s′ refines s.
Therefore

x(N ′) · ds ≥ 2k+1W (s)

for all k-bridge binary level-1 networks N ′, and is an equality precisely when N ′ refines N.
The reason for our claim is that when s′ refines s, we have that ds is equivalent to a

distance vector ds′ derived from a weighting of s′, where the splits are given weight = 1 if
they are also in s, and weight = 0 if not. Also then W (s) = W (s′). Thus in that case,
x(s′) · ds = x(s′) · ds′ = 2k+1W (s′) = 2k+1W (s). The second equality in that string is by
Theorem 5.1, which holds even for weights equal to zero. Notice that this could also be
described as summing the tours on s for consistent circular orders. For example, see Fig. 9.

Now, for any binary level-1 R not refining N , meaning that N = L(s) displays a split A|B
not displayed by R, we see that R will be consistent with a circular order c that is not consistent
with L(s). That is because when A|B is displayed then every consistent circular order has both
parts A and B contiguous. If A|B is not displayed then there will be a consistent circular order
c in which the set of leaves A is not found contiguously.

Similar to the argument for Theorem 5.2, R having a circular order c not consistent with
N = L(s) implies that x(s′) ·ds > 2k+1W (s). That is because the dot product is equivalent to
summing all the tour lengths for tours of s using circular orders consistent with R, and for c
this results in a tour that uses some splits of s more than twice. For example, see below.

�
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Examples: In Fig. 9, for n = 8 and k=1, we show two networks N ′, N ′′ which are both
vertices of the face determined by network N. The relevant vectors are:

ds = ds′ = ds′′ = (3, 5, 5, 6, 5, 4, 3, 4, 6, 7, 6, 5, 4, 4, 5, 4, 3, 4, 3, 4, 3, 4, 3, 4, 5, 3, 4, 3)
x(N ′) = (2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 2, 0, 0, 1, 0, 2)
x(N ′′) = (2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 1, 2, 0, 0, 2, 0, 1)

And thus: x(N ′) · ds = x(N ′′) · ds = 52 = 4(13) = 22W (s).
In contrast for R as follows:
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with x(R) = (2, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 2, 0, 2), we see that N dis-
plays the split {1, 2, 8}|{3, 4, 5, 6, 7} but that R does not. Also, R is consistent with the circular
order c = (8, 7, 6, 5, 4, 1, 2, 3, 8), but N and thus s are not. The tour that c describes on s uses
the split {1, 2, 8}|{3, 4, 5, 6, 7} four times (so adds the value of that split twice more than in a
minimal tour.) Indeed x(R) · ds = 54.
For some smaller examples, in Fig. 10 there are three faces shown. The first two (a) and (b)
are in BME(5,0), and the third (c) is in BME(5,1). They are pictured in context in Fig. 6.
Here we include the vector ds for each of the three. In (a) we have W (s) = 7 and the vertices
of BME(5,0) obey x(s′) ·ds ≥ 14. In (b) we have W (s) = 8 and the vertices of BME(5,0) obey
x(s′) · ds ≥ 16. In (c) we have W (s) = 7 and the vertices of BME(5,0) obey x(s′) · ds ≥ 28. In
the figure we show vertices that obey the inequality sharply. To see the strict inequality take
dot products with any other vertex vector from the respective polytope.

Remark 5.6. For a 1-nested network s with n leaves and k bridges, embedded in each polytope
BME(n, j) for k > j ≥ 0 is a collection of faces corresponding to networks which refine our
given network s. Those faces link up (by sharing subfaces) to make an interesting complex, as
shown by the shaded subfaces in Fig. 6. The topology of these complexes is an interesting open
question.

Two polytopes are called nested when one lies inside the other, and the smaller polytope has
all its vertices on the surface of the larger. It turns out that all the level-1 network polytopes
are, up to scaling, nested sequentially inside each other. Even more, they are all at the same
time nested inside the Symmetric Travelling Salesman polytope. This is pictured in Fig. 11.
Precisely:

Theorem 5.7. We can scale the network polytopes so that the polytope BME(n, k) is nested
inside BME(n, k − 1) for 0 < k ≤ n − 3. Furthermore, we can simultaneously scale all the
BME(n, k) polytopes so that they are all nested inside of STSP(n) (with vertices at facial
barycenters) and each BME(n, k) is nested inside BME(n, j) for j < k.

Proof. Consider 0 < j < k ≤ n − 3. We show that the vertices of the scaled polytope
(2n−3−k)BME(n, k) lie on faces of the scaled polytope (2n−3−j)BME(n, j) which in turn lie
on the faces of the scaled polytope (2n−3)STSP(n).
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Figure 10. Three subfaces, shown with their representative networks, normal
vectors, and vertices. All three are from facets shown in Fig. 6. Edge (b) is a
subface of tetrahedron (a), from BME(5,0). Quadrilateral (c) is from BME(5,1).
Notice that the normal vectors are used more than once.

First, by Lemma 4.7, any vertex x(s) of BME(n, k) is the sum of two vertices of BME(n, k−
1), found by adding a single split to s in two ways. Therefore if BME(n, k − 1) is first scaled
by 2, the sum of those two vertices will also be scaled by 2. Thus the (unscaled) vertex x(s) of
BME(n, k) is the midpoint of those two scaled vertices: after adding, divide by 2. By convexity,
this vertex is thus on a face of (2)BME(n, k − 1).

Secondly, any vertex x(s) of BME(n, k) is on the surface of (2k)STSP(n). To see this, recall
from Theorem 4.5 that x(s) is the sum of all x(c) for c a circular ordering consistent with s.
Note that the consistent circular orderings are precisely the vertices of the face of STSP(n)
corresponding to the binary level-1 network s. There are 2k of them. Thus by first multiplying
each by 2k and then dividing their sum by 2k we see that the vertex x(s) is at the barycenter
of the corresponding face of (2k)STSP(n.)
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Together these facts show that while each BME(n, k) is nested in a scaled version of BME(n, k−
1), all are simultaneously nested in a scaled version of STSP(n). By scaling STSP(n) by 2n−3

and each BME(n, k) by 2n−3−k we can see them all nested simultaneously and sequentially. For
example see Fig. 11. �
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Figure 11. The facet of STSP(5) pictured is the same one as in Fig. 6(a), but
scaled by a factor of 4. The corners of the shaded quadrilaterals are located at
barycenters of faces (edges) of STSP(5). On the right we show just the convex
hull of those barycenters, and then a Schlegel diagram obtained by rotating it.
The vertices of this convex hull are those of the split facet of BME(5,1) shown
in Fig. 6(b) but scaled by 2.

Theorem 5.8. The dimension of BME(n, k) is
(
n
2

)
−n. The dimension reducing equalities are

as follows: For each leaf j = 1, . . . , n the vertices x(s) satisfy∑
i∈[n]−{j}

xij = 2k+1 ,

where k is the number of bridges (non-crossing diagonals) in the diagram.

Proof. The dimension results from the nesting property, Theorem 5.7. Since the STSP(n) and
BME(n) polytopes are both of dimension

(
n
2

)
− n, the BME(n, k) polytopes nested between

them must also have that same dimension.
The equalities generalize the Kraft equalities for phylogenetic trees (k = n − 3), and the

degree equations for the STSP(n) for all n, (k = 0.) In fact we can use the latter as base cases
for the proof by induction on the number of bridges k. Assuming that the equality holds for all
s with n leaves and k bridges, we show that it holds for s with n leaves and k+1 bridges. Recall
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from Lemma 4.7 that there are networks s′ and s′′ with k bridges and with x(s) = x(s′)+x(s′′).
By our inductive assumption, both smaller vectors obey the required formula, both with the
sum of components = 2k+1. Thus after adding them together the resulting sum is = 2k+2. �

5.1. Counting binary level-1 networks. The associahedra K(n) are a sequence of poly-
topes, one in each dimension. Their faces correspond to sets of non-crossing diagonals in the
n-sided polygon. In this case the polygon is fixed in the plane, with no rotations or flips
allowed. However, we can still use the number of associahedron faces of each dimension to
enumerate the vertices of the BME(n, k) polytopes.

Theorem 5.9. The number of vertices of BME(n, k), and thus the number of binary level-1
networks with n leaves and k non-trivial bridges, with 0 ≤ k ≤ n− 3 is:

v(n, k) = T (n, k)
(n− 1)!

2k+1

where T (n, k) gives the components of the face vector of the associahedron K(n).

Here, as seen in entry A033282 of Sloane [2018],

T (n, k) =

(
1

k + 1

)(
n− 3

k

)(
n+ k − 1

k

)
which allows the simpler count:

v(n, k) =

(
n− 3

k

)
(n+ k − 1)!

(2k + 2)!!
.

Table 2 shows the number of vertices of BME(n, k), (the number of binary level-1 networks
with n leaves and k bridges) for small values of n, k. Note that the cases k = 0 and k = n− 3
count the circular orderings and phylogenetic trees of length n, respectively.

Proof. Vertices in the polytope BME(n, k) correspond to the binary level-1 networks with n
leaves and k nontrivial bridges. The bridges in a level-1 network L = L(s) are the same as the
bridges in any preimage split network s. We construct a binary level-1 network N as follows.
We start with the n-sided polygon, label one side as 1, and then label the remaining sides in
any order. The number of circular orderings is (n−1)!/2. Then, independently, we choose non-
crossing diagonals for the k bridges, counted by T (n, k). Crucially, the side labeled 1 can be
though of as the rooted edge so that each of the subdivisions of the polygon counted by T (n, k)
is actually a distinct choice. Since we are only counting up to twists around each bridge , we
need to divide by 2k. That completes the counting: next we construct the final binary level-1
network N by making a graph cycle out of each region in the subdivided polygon (except the
triangular regions, which become tree-like degree-3 nodes), and attaching bridges and leaves
according to the labeled polygon edges and diagonals. Equivalently, we can see the polygonal
picture of Σ(N) by adding crossing diagonals to each region of our subdivided polygon. �

Fig. 12 shows the process of constructing a binary level-1 network using a cyclic ordering and
a face of the associahedron. In Levy and Pachter [2011] the authors point out that a vertex of
the associahedron, together with a cyclic ordering, corresponds to a phylogenetic tree. We see
that the correct extension of that correspondence is to the binary level-1 phylogenetic networks.
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Figure 12. Starting with a cyclic ordering of the edges of the octagon, and
adding bridges (to get a face of the associahedron) to construct a binary level-1
network.

Also note that Semple and Steel use a generating function of three variables to derive a
more general formula for counting galled trees in Semple and Steel [2006]. Thus their formula
implies ours in the case that no cycles of length three are allowed. It is suggestive that their
proof method uses Lagrange inversion of the generating function. As shown in Aguiar and
Ardila [2017] Lagrange inversion of a series uses the face numbers of the associahedra. Here
that fact instead allows us to enumerate the binary level-1 networks with n taxa directly, by
summing our formula from k = 0 to k = n − 3. The row sums of Table 2 are 1, 6, 57, 750,
12645, 260190... which is sequence A032119 of Sloane [2018]. However it does not appear
that that sequence has been used to count level-1 networks; rather it is described as counting
rooted planar trees with labeled leaves, with equivalence under rotating subtrees left to right
at any given branch node. The bijection from binary level-1 networks to these planar trees is
straightforward, by replacing our cycles with nodes of higher degree.

n = k = 0 1 2 3 4 5 6
3 1
4 3 3
5 12 30 15
6 60 270 315 105
7 360 2520 5040 3780 945
8 2520 25200 75600 94500 51975 10395
9 20160 272160 1134000 2079000 1871100 810810 135135

Table 2. Numbers of vertices for the BME(n, k) polytopes, that is, numbers of
binary level-1 phylogenetic networks with n leaves and k bridges.

6. Facets

We have found that many of the known facets of BME(n) have analogues in BME(n, k).

Theorem 6.1. Any split A|B of [n] with |A| > 1, |B| > 1 corresponds to a face of BME(n, k),
for all n, k with k ≤ n − 3. The vertices of that face are the binary level-1 networks which
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display the split A|B. Furthermore, if |A| > 2, |B| > 2, the face is shown to be a facet of the
polytope. The face inequality is: ∑

i,j∈A

xij ≤ (|A| − 1)2k.

Proof. First we show that the collection of vertices corresponding to networks displaying a split
A|B of [n] obey our linear equality, and that all other vertices obey a corresponding inequality.

The equality follows from similar logic to that in the proofs of Theorem 4.5 and Corollary 4.6.
If a network displays a split A|B then so must every circular ordering of [n] consistent with that
network. There are 2k such circular orderings. If a circular ordering c displays the split A|B
then it must have the leaves of A contiguous in that circular ordering. Thus the components
xij(c) with i, j both corresponding to leaves from A will contain exactly |A| − 1 entries that
are equal to 1, for the edges connecting those leaves. The equality follows: for s displaying the
split A|B we have

∑
i,j∈A x(s)ij = (|A| − 1)2k.

The strict inequality holds for any binary level-1 network which does not display the split
A|B. The same reasoning as above holds, but this time there will be at least one circular order-
ing c which does not display the split. In that circular ordering, the components corresponding
to the leaves from |A| have fewer 1’s than the maximum |A| − 1, so the sum will be less.

Next we show that the face just described, denoted FA(n, k), is of codimension 1 when both
parts of the split are larger than 2. The polytopes are all of dimension

(
n
2

)
−n, so we show the

facets are of dimension 1 less. We use the fact that for any polytope, its scaling by m is of the
same dimension. Equivalently, taking sets of m vectors all from the same facet of a polytope,
the vector sums of m such vectors will all lie in an affine space of the same dimension as that
facet. (Thus any subset of those sums of m vectors each will have a convex hull of smaller or
equal dimension than the original facet.)

We have that a given split, with both parts larger than 2, corresponds to a subtour-
elimination facet of STSP(n) = BME(n, 0) and also to a split-facet of BME(n, n−3) = BME(n).
Both are dimension

(
n
2

)
− n− 1. From Lemma 4.7, we know that each vertex x(s) of the pro-

posed split-facet FA(n, k) is the vector sum x(s′)+x(s′′). The two summands are both vertices
of the proposed split-facet FA(n, k − 1), since s′ and s′′ both display the split A|B.

Therefore the facet FA(n, k) cannot be of greater dimension than the facet FA(n, k−1). Since
the dimension cannot increase at any step between k = 0 and k = n− 3, and it has the same
value for k = 0 and for k = n− 3, then it must remain constant for each k at

(
n
2

)
− n− 1. �

For the case of splits with one part of size two, we know that these do correspond to a facet
when k = 0, the STSP(n), but not when k = n − 3, in BME(n). It is an open question for
which other n, k the splits of size two correspond to facets of BME(n, k.) We conjecture this
for all k < n− 3, but we can only report the positive result for n = 5.

Fig. 6(a) shows a subtour elimination facet of STSP(5) = BME(5,0), corresponding to the
split s = {{1, 2}, {3, 4, 5}}. In this case it is combinatorially equivalent to the 4D Birkhoff
polytope. Split networks label subfaces of this facet. Fig. 6(b) shows the corresponding split-
facet of BME(5,1), in which the vertices are nine networks with a single bridge that each refine
s. Fig. 13 shows the same split-facet, with alternate labels. Fig. 6(c) shows the 2D face of
BME(5) corresponding to the same split. Summing either of the horizontal or vertical pairs of
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vectors shown in (a) gives the four vectors shown in (b). Summing all four vectors in (a) gives
the vector shown in (c).

Next we look at the existence of lower bound faces, and conjecture that they are in fact
facets as well.

Theorem 6.2. For each pair i, j ∈ [n] we get a face of BME(n, k) for all n, k with k ≤ n− 3.
For k = n− 3 these are the caterpillar facets, described above in Table 1. For k ≤ n− 4 these
faces contain the vertices associated to networks with no consistent circular orderings such that
i, j are adjacent. The face inequality for each of these latter is xij ≥ 0.

Proof. For k ≤ n − 4 the equality xij(s) = 0 holds by definition for networks s with no
consistent circular orderings such that i, j are adjacent. For any network s which possesses a
consistent circular ordering with i, j adjacent, we see the component xij(s) > 0. Recall from
the introduction that any such inequality defines a face of the polytope. �

We would like to know which of these lower bound faces are facets. They are facets for the
case of k = 0, the Symmetric Travelling Salesman polytopes, and for k = n− 3, the Balanced
Minimum Evolution polytopes. For the case of k = n − 3 however the caterpillar facets have
vertices that obey xij ≥ 1. In fact none of their vector components are zero, so they are not
the sum of a pair of lower bound face vertices from a given lower bound face. However the
lower bound face is a facet for n = 5, k = 1, (pictured in the next section, Fig. 14), and we
conjecture this is true for all lower bound faces.

7. BME(5,1)

We have investigated more fully the case of BME(5,1), by using polymake, Gawrilow and
Joswig [2000], to find all the facets and then observing the patterns they obey. There are 62
facets altogether, of four different types. The (5, 1) networks are especially simple: each has
the same underlying graph, with a cherry clade attached to a length-4 cycle with one central
leaf across from the cherry.

Theorem 7.1. In BME(5,1) there are
(
5
2

)
= 10 split facets, each of which has nine vertices.

Proof. These are predicted to be faces by Theorem 5.8, but it is a surprise that they are indeed
facets since each nontrivial split of [5] has a part of size 2. We check that they are facets by
inspection in polymake. Let the split be {a, b}|{c, d, e}. Each split facet in BME(5, 1) has nine
vertices: These are the networks formed by 3 ways to put {a, b} on the cherry with a choice of
the other 3 on the central leaf, 3 ways to put a on the central leaf, and 3 ways to put b on the
central leaf. �

From polymake, we find that these lower bound facets are each a product of two triangles.
For an example see the split facet for the split {1, 2}|{3, 4, 5} pictured in Fig. 13, where the
inequality is x1,2 ≤ 2. Compare to Fig. 6 where the same facet is shown labeled by polygons.

Theorem 7.2. In BME(5,1) there are 10 lower bound facets, one for each component of xij(s).
Each has nine vertices.

Proof. These are predicted to be faces by Theorem 6.2, but here again we see they are indeed
facets via polymake. Each lower bound facet in BME(5, 1) has nine vertices: three ways to
put i on the central leaf and j on the cherry with one of the other three taxa, three ways to
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Figure 13. A split facet in BME(5,1). These vertices obey x1,2 = 2

put j on the central leaf, and three ways to put i, j non-adjacent on the 4-cycle with one of
the other three on the central leaf. �

From polymake, we find that these lower bound facets are each a product of two triangles.
For an example see the lower bound facet for the inequality x1,2 ≥ 0 pictured in Fig. 14.

Theorem 7.3. In BME(5,1) there are 30 facets which we call the excluded node facets. They
have 8 vertices each, which obey (sharply) the facet inequality:

xab + xcd − xac − xbd ≤ 3

where a, b, c, d, are four taxa in cyclic order.

Proof. These facets correspond to choosing 4 of the 5 taxa, excluding one taxon. Then the four
are given a cyclic order, and then that cyclic order is split into two contiguous pairs. These
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Figure 14. A lower bound facet in BME(5,1). These vertices obey x1,2 = 0.

choices are independent, giving 5(3)2 = 30 facets. Each facet has 8 networks as its vertices,
found by choosing to place the excluded taxon on either the cherry or the 4-cycle (but not
on the central leaf); followed by placing the chosen four taxa on the remaining leaves in their
cyclic order, but not allowing either contiguous pair to be separated by the excluded taxon. By
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inspection, each excluded node facet obeys the following inequality, where the circular ordering
is a, b; c, d with the first and second pairs contiguous: xab + xcd − xac − xbd ≤ 3. �

Each excluded node facet is a 4D prism: the interval crossed with a tetrahedron. For an
example see the excluded node facet for the cycle 1, 2; 5, 3 pictured in Fig. 15.
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Figure 15. An excluded node facet in BME(5,1). These vertices obey x1,2 +
x5,3 − x1,5 − x2,3 = 3.

Theorem 7.4. In BME(5,1) there are 12 facets which we call the cyclic order facets. They
have 5 vertices each, which obey (sharply) the facet inequality:

xab + xbc + xcd + xdf + xaf ≤ 8
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where (a, b, c, d, f) is a cyclic order on the taxa.

Proof. By inspection, there is a cyclic order facet for each of the 12 circular orderings. Each
network (vertex) in the facet represents the same circular ordering when reading the leaves
around the network in a circle (up to twists around the bridge). There are five such networks
for a given circular ordering, distinct by the choice of which taxa to place on the central leaf
of the 4-cycle. By inspection, the vectors of the trees in these facets adhere to the equality
xab + xbc + xcd + xdf + xaf = 8. �

For an example see the cyclic order facet for the cycle (a, b, c, d, f) pictured in Fig. 16.
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Figure 16. A generic cyclic order facet in BME(5,1). These vertices obey
xab + xbc + xcd + xdf + xaf = 8.
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8. Applications and further investigation.

As mentioned above, we conjecture that certain inequalities of BME(n, k) such as the lower
bounds in Theorem 6.2 and the upper bounds from a split with one part of size two in Theo-
rem 6.1 are actually facet inequalities (except for the latter in the case of k = n− 3). However
we already have the following:

Theorem 8.1. The split inequalities and lower bound inequalities together define a relaxation
of the polytope BME(n, k) for n ≥ 3 and 0 ≤ k ≤ n− 3.

Proof. This is straightforward, since by restricting to some subset of the inequalities we will be
considering a convex shape that contains BME(n, k). The result is bounded above and below
via the inequalities 0 ≤ xij ≤ 2k. (The lower bound is 1 ≤ xij for k = n− 3.) �

For example, the relaxation of BME(5,1) given by the lower bound and split inequalities
is just the 10-dimensional hypercube. The relaxation of a polytope can be used as a start-
ing point for algorithms that attempt to find the optimal solution among the vertices of the
original polytope. Our relaxation will allow future implementations of two such algorithms:
branch-and-bound, and branch-and-cut. The first uses the fact that all the coordinates of the
actual solutions (vertices of BME(n, k), representing networks) are powers of 2. That allows
an initial approximate solution on the relaxation to be forced closer to the correct solution by
looking for coordinates in the approximate solution that are not powers of 2, and branching
into subproblems by subdividing the polytope with hyperplanes perpendicular to that coordi-
nate axis. The branch-and-bound algorithm with split facets is implemented for BME(n) =
BME(n, n− 3) in Forcey et al. [2018]. The second algorithm, branch-and-cut, becomes impor-
tant when for larger values of n the number of split facets grows exponentially. Rather than
use all those inequalities immediately, they can be added in little-by-little when they are seen
to cut off some coordinate in the approximate solution that is not a power of 2.
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