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Abstract. In this note we introduce several instructive examples of bijections found be-
tween several different combinatorially defined sequences of sets. Each sequence has car-
dinalities given by the Catalan numbers. Our results answer some questions posed by R.
Stanley in the addendum to his textbook. We actually discuss two types of bijection, one
defined recursively and the other defined in a more local, relative, fashion. It is interesting
to compare the results of the two.

1. Introduction

1.1. Catalan objects. In the work that led to this note we set out to find explicit bijections
between several sequences of sets that are known to be counted by the Catalan numbers,
sequence A000108 in [6]. One sequence of sets we call the right-swept planar unary-binary
trees, or right-swept trees for short. These are the same restriction of planar unary-binary
trees that are labeled as example “www” in R. Stanley’s Catalan Addendum (version of
July 2012) [5]. In [3] Kim describes what we call right-swept trees as a special kind of
planar unary-binary trees, and Kim gives in the same article a bijection to the non-crossing
partitions. We were inspired to find bijections from these right-swept trees to other familiar
sets of objects counted by the Catalan numbers, due to the fact that they have a nice
recursive description that is different from the standard Catalan recursion. In this paper
we find bijections from the right-swept trees to staircase tilings, planar trees, planar binary
trees and arc tree diagrams, allowing the reader to construct many more implied bijections
to non-crossing partitions, polygonal dissections and lattice paths. Our first set of recursive
bijections is described in Section 2. Our second bijection between staircase tilings and right-
swept trees is discussed in Section 3.

A right-swept tree is a rooted planar tree with the following restrictions. In general a node
may be a leaf, may have a single child which must be left, middle, or right; or instead may
have two children: left and right. Any left child has further restrictions: it may not be a
leaf, and it may not have a middle child. Thus any branching to the left is eventually swept
right before it can end in a leaf. Figure 1 shows a right-swept tree.

Our second featured sequence is known as the diagonal rectangular tilings of staircase
shapes, or staircase tilings for short. A staircase shape is the outline of a Young diagram
corresponding to a partition given by (n, n − 1, . . . , 1). The Catalan numbers count tilings
whose rectangles each include some of the stepped diagonal–i.e. each intersects the end of a
row in the Young diagram. These are equivalently described as rectangular tilings of height
n staircase shapes that contain exactly n rectangles. The fact that having n rectangles is
equivalent to being a diagonal tiling is also true for diagonal rectangulations of the square,
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Figure 1. Two views of a right-swept tree. We will use the first, with root at
the top. The (remixed) photo is a windswept hawthorne near Galway, original
taken by Eoin Gardiner (creative commons).

and we refer the reader to [4] both for a proof and for some very nice related combinatorics.
The staircase tilings are also referred to as tilings of stair-step shapes, as in [2].

There is a well known bijection from staircase tilings to the sets of rooted planar binary
trees. Simply removing the “steps,” the vertical and horizontal boundary segments of unit
length at the far right and bottom of the figure, and adding a root, yields a binary tree
(whose drawing has been rotated from its normal presentation.) A staircase tiling and its
corresponding binary tree is shown in Figure 2.

Figure 2. Two views of a staircase tiling. We will use the version on the
left. The binary tree in the center is the image of the staircase tiling under the
classical bijection: it is formed by removing the steps. We will draw rooted
binary trees with the root at the bottom.

The bijection exemplified in Figure 2 is trivially described in recursive terms. A planar
binary tree t with more than one leaf (and thus the corresponding staircase tiling) is formed
by joining a pair of smaller binary trees–the left and right subtrees whose root is the first
branch point of t. Many other Catalan objects have a similar recursive description–triangular
dissections of a polygon, bracketings of a string of symbols, and Dyck paths, to name a few.
This description leads to Segner’s classic recursion relation for the Catalan numbers cn:

(1) c0 = 1 and cn+1 =
n∑

k=0

ckcn−k for n > 0,
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where n is the number of branch points for the binary tree, or the number of rectangles in
the staircase tiling. The recursion yields the closed formula:

cn =
1

n+ 1

(
2n

n

)
.

If Xn and X ′n are any two of the sequences of sets that have Segner’s recursive description
then they are in piecewise bijection (both counted by cn), and the correspondence is explicitly
described using the recursion. If a bijection is given between the kth sets of the two sequences,
for k = 1 . . . n, then given an object of Xn+1 we can decompose it into two objects from earlier
in the sequence, find their corresponding objects and use them to construct the corresponding
object in X ′n+1.

We began by using a different, nonstandard recursion for the Catalan numbers to seek
bijections between the staircase tilings and the right-swept trees. Our first bijection discussed
in Section 2 is based on an alternate recursive description of the staircase tilings, which fits
well with the natural recursive description of the right-swept trees. Here is the recursion
that we will be using (its four parts will be explained one at a time in Section 2):

cn+1 = cn + cn + (cn − cn−1) +

(
n−1∑

k=2

cn−k(ck − ck−1)

)
.

By finding analogous ways to recursively construct other sorts of Catalan objects we can
describe them as being in bijection with the right-swept trees, and each other, in new ways.
As an example we include non-crossing arc diagrams with distinct left endpoints, or arc trees
for short.

Arc trees are defined to be the ways of connecting n+ 1 points lying on a horizontal line
on the plane with n non-crossing arcs lying above the line such that the left endpoints of
the arcs are distinct. There is always a unique series of arcs traveled from left to right from
any point to the rightmost point. Thus there is always a unique shortest path to travel from
one point to another. These are easily seen to be in bijection with planar rooted trees with
n edges, simply by choosing the rightmost point to be the root and then straightening the
arcs. See Figure 3.

Figure 3. The bijection from non-crossing arc diagrams with distinct left
endpoints to planar rooted trees: from left to right we gradually straighten
the arcs. We will draw planar rooted trees with the root at the bottom (as
opposed to the right-swept trees with their root at the top.)
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2. Recursive bijections

As mentioned, in order to keep this paper self contained, we have repeated the definitions
given in R. Stanley’s Catalan addendum (version of 13 July 2012) to [5] of the combinatorial
objects www, h8, and h5: called here respectively the right-swept trees, staircase tilings and
arc trees.

We represent the set of right-swept trees with n nodes as Tn, the set of stair-case tilings
with n rectangles as Sn and the set of arc trees with n arcs as An. We refer to the sets as
the shapes of size n. The five objects for size n = 3 are seen in Figures 4, 5 and 6.

Figure 4. Right-swept trees T3.

Figure 5. Staircase tilings S3.

Figure 6. (Non crossing) arc trees A3.

Here we introduce a recursive method to construct a shape with size of n + 1 in any of
these three combinatorial sets using shapes of smaller size. We construct four different types
of shapes of size n+ 1 using four methods:

(1) We define functions fR : Xn → Xn+1, X ∈ {T,S,A} , n ≥ 1 ∈ N. Depending on
which combinatorial object is the input to this function, we perform the following
procedures:

a) X = T: In this case, the output in Tn+1 = fR (Tn) is a right-swept tree with
n + 1 vertices constructed by adding one vertex to t ∈ Tn as the new root whose
right child is the root of t.
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b) X = S: In this case, the output in Sn+1 = fR (Sn) is a staircase tiling with
n+ 1 rectangles constructed by adding one ((n+ 1)× 1) rectangle to the left side of
an input from Sn.

c) X = A: In this case, the output in An+1 = fR (An) is is an arc tree with n+ 2
points constructed by adding one point to the left side of a ∈ An and connecting it
to the nearest point in a.

Figure 7 represents the operation of fR whose input can be any possible shape with
size of n. Thus the number of shapes of size n + 1 which can be constructed by fR
is denoted cn+1,1 = cn.

T
n

S
n

A
n

Figure 7. Construction of Xn+1 using fR.

(2) We define functions fM : Xn → Xn+1, X ∈ {T,S,A} , n ∈ N, and for the case
n = 0. Depending on which combinatorial object is the input to this function, we
perform the following procedures:

a) X = T: In this case, the output in Tn+1 = fM (Tn) is a tree with n+ 1 vertices
constructed by adding one vertex to t ∈ Tn as the new root whose middle child is
the root of t. We define T0 to be {∅} and define the single element of T1 as fM(∅).

b) X = S: In this case, the output in Sn+1 = fM (Sn) is a tiling with n+ 1 rectan-
gles constructed by removing the left edge of s ∈ Sn, extending s one column to the
left and then adding one single square to the bottom of the new column. We define
S0 to be {∅} and define the single element of S1 as fM(∅).

c) X = A: In this case, the output in An+1 = fM (An) is an arc tree with n + 2
points constructed by adding one point to the left side of a ∈ An and connecting it
to the farthest point in a. We define A0 to consist of a single point and define the
single element of A1 as the image of that point under fM .

Figures 8 and 9 represent the operation of fM whose input can be any possible
shape with size of n. Thus the number of shapes of size n + 1 which can be con-
structed by fM is denoted cn+1,2 = cn.

(3) We define functions fL : (Xn − fM(Xn−1)) → Xn+1, X ∈ {T,S,A} , n ≥ 1 ∈ N.
Depending on which combinatorial object is the input to this function, we perform
the following procedures:
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Figure 8. Construction of Xn+1 using fM .

T 5 S 5

T 4 S 4
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Figure 9. Examples of the construction of Xn+1 using fM .

a) X = T: In this case, the output of fL is a tree with n + 1 vertices constructed
by adding one vertex to a size n right-swept tree t as the new root whose left child
is the root of t. Here the original root of t will not have a middle child.

b) X = S: In this case, the output of fL is a tiling with n+1 rectangles constructed
by adding one ((n+ 1)× 1) rectangle to the top of a shape from Sn. Here s ∈ Sn
should not have a single square as its lowest tile. In other words s should not be
constructed by fM (Sn−1).

c) X = A: In this case, the output of fL is an arc tree with n+2 points constructed
by adding one point to the left side of a size n arc tree a and connecting it to the
second nearest point (but not the rightmost one) in a such that the connection does
not intersect with any other arc in a. Notice that this is impossible if the input arc
tree has an arc between its first and last points. In other words a should not be
constructed by fM (An−1).

Figure 10 represents the operation of fL whose input can be any possible shape
with size of n except the shapes constructed by fM (Xn−1). Thus the number of
shapes of size n+ 1 which can be constructed by fL is denoted cn+1,3 = cn − cn−1.

6



T
n

S
n

A
n

Figure 10. Construction of Xn+1 using fL.

(4) For the last case we define functions f : ((Xn1 − fM(Xn1−1))×Xn2)→ Xn+1, X ∈
{T,S,A} , n1 > 1 ∈ N, n2 ∈ N, n = (n1 + n2) ≥ 3. Depending on which combinato-
rial object is the input to this function, we perform the following procedures:

a) X = T: In this case, the output in Tn1+n2+1 is a tree with n1 + n2 + 1 vertices
constructed by adding one vertex as the root whose left and right children are the
roots of trees from Tn1 − fM(Tn1−1) and Tn2 respectively.

b) X = S: In this case, the output in Sn1+n2+1 is a shape with n1 + n2 + 1 rect-
angles constructed by introducing a rectangle of size ((n1 + 1)× (n2 + 1)) in the top
left corner of the shape and adding staircase tilings t1 ∈ Sn1−fM(Sn1−1) and t2 ∈ Sn2

to the bottom and right of the rectangle respectively. The tiling added to the bottom
should not have a single square as its bottom-most tile.

c)X = A: In this case, the output in An1+n2+1 is a shape with points constructed
by concatenating arc trees from An1−fM(An1−1) and An2 in that order, left to right,
by identifying their respective rightmost and leftmost points. Then we add a point
to the left side of both and connect it to the identified common point. The input arc
tree on the left should not have an arc between its first and last points.

Figure 11 represents the operation of f (., .) to construct a shape of size n1 +n2 +1.
The first input argument can be any shape with size of n1 > 1 except the shapes
constructed by fM (Xn1−1). However the second argument can be any shape of size
n2 . The number of shapes of size n+ 1 which can be constructed with this function

is denoted cn+1,4 =
n−1∑
k=2

cn−k (ck − ck−1).

Tn
1

Tn
2 S n

1

S n
2

An
1

An
2

Figure 11. Construction of Xn1+n2+1 using f (Xn1 ,Xn2)
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T 1 S 1 A1

Figure 12. Trivial bijections between T1, S1 and A1. Recall that these are
each defined as an image of fM .

2.1. Bijections implied by the construction. The functions we have defined allow the
shapes to be built recursively, and to be deconstructed as well. Unique construction and
deconstruction allow us to realize a bijection between any two sets whose shapes are built
with the four functions defined above. First we note that there is only one element of X1

for each of the shapes we consider. Figure 12 shows the three sets of size one.

Definition 2.1. For n ≥ 1 we define maps α : Xn → X′n for X,X′ ∈ {T,S,A} as follows:
For x ∈ Xn we consider x to be the shape that results from applying exactly n functions

fi, i = 1 . . . n in a particular order to k initial copies of x0 ∈ X0, the single element of
size zero for k ≥ 1. Here fi ∈ {f, fL, fR, fM}. We denote as Fx the function that is the
composition of cartesian products of the n functions fi, whose domain is k copies of X0, and
whose sole image is x.

Then α(x) = Fx(x
′
0, x
′
0, . . . , x

′
0) for k copies of x′0 ∈ X′0, the element of size zero.

For examples see Figures 13, 15 and 16.

Theorem 2.2. α : Xn → X′n as just defined gives bijections for all X,X′ ∈ {T,S,A}.
Proof. We show that α is well defined, surjective and invertible by demonstrating that for
any shape x′ ∈ X′n there is a unique composition of cartesian products of functions from
fL, fM , fR and f that constructs it. Since a given composition constructs only one shape in
each of T,S,A, having that composition means having knowledge of a unique shape x ∈ Xn

corresponding to x′. The existence of a unique composition is argued using strong induction,
since the function f takes inputs from sets with smaller indices than just n−1. We note that
the single shapes for n = 1 (in Figure 12) are all constructed uniquely by fM by definition.
Assuming that shapes smaller than size n are uniquely constructed, we then check for size
n as follows:

T : For any right-swept tree t ∈ Tn, depending on whether the root has left, middle,
right or both left and right children, the tree is uniquely constructed from one or two
smaller trees. For the right-swept trees this follows from their definition.

S : For any staircase tiling s ∈ Sn the shape is uniquely constructed from one or two
smaller shapes. The construction is determined first by whether s has a single square
as its bottom-most tile. If that is the case, then s is constructed from a single smaller
tiling by fM . Otherwise, we can determine whether it was constructed by fL, fR or
f respectively by whether s has a a single long rectangle along its top, along its left
side, or neither (instead it has a thick rectangle that covers some of both but neither
the entire top nor the entire left edges.)

A : For any arc tree a ∈ An the shape is constructed from one or two smaller shapes.
The construction is determined first by whether a has a single arc connecting its first
and last points. If that is the case, then a is constructed from a single smaller arc
tree by fM . Otherwise, we can determine whether it was constructed by fR, fL or f
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respectively by whether a has a a single short arc connecting its first (leftmost) and
second points, a single arc connecting its left-most point with the second available
point, or neither (instead it has a single longer arc connecting its left-most point to
another, more central, point.)

�
It is instructive to show that the total number of shapes constructed by our four functions

is equal to cn+1. That is, that the Catalan number cn+1 =
4∑
i=1

cn+1,i. Equivalently we need

to prove that
n−1∑
k=1

ckcn−k = cn+1 − 2cn. To see this we expanded the sum and used Segner’s

recurrence relation for Catalan numbers:

(2) c0 = 1 and cn+1 =
n∑

k=0

ckcn−k for n > 0.

So we have

(3) cn+1 =
n∑

k=0

ckcn−k = c0cn +
n−1∑

k=1

ckcn−k + cnc0 ⇒
n−1∑

k=1

ckcn−k = cn+1 − 2cn.

2.2. Examples. Example 1: We want to demonstrate the bijections between right-swept
trees, staircase tilings and arc trees for n = 3. For this we use the proposed method twice.
So for n = 2 the bijection between these combinatorial objects is illustrated in Figure 13:

T 2 S 2 A2

Figure 13. Bijections between right-swept trees, staircase tilings and arc
trees for n = 2. The top row is formed by fM ◦ fM and the bottom row by
fR ◦ fM .

Now the bijections between right-swept trees, staircase tilings and arc trees for n = 3 can
be illustrated, in Figure 18:

Example 2: Here we take a shape in S12, seen in Figure 14. We want to find its images
under α in T12 and A12. First we apply the inverses of our functions introduced before in
order to uniquely reduce the size of the shape to n = 1, shown in Figure 15. Now by applying
the functions we found in Figure 15, we can construct bijective images of the staircase tiling
in the sets of right-swept trees and arc trees, which are shown in Figure 16. Finally we
present the induced bijective correspondence for a binary tree with 12 internal nodes and a
planar tree with 12 edges. This is seen in Figure 17.
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Figure 14. An example of a staircase tiling with n = 12.
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-1
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f
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R

f
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Figure 15. The inverse process on shape of Figure 14. Darkly shaded tiles
are discarded by the inverse functions. Thus the tiling x shown here is formed
by:
Fx(x0, x0, x0) = f(fM ◦ fL ◦ fR ◦ fM ◦ fM(x0), fR ◦ f(fM(x0), fR ◦ fR ◦ fM(x0))).

3. Relative bijection from Tn to Sn

For contrast, we consider a different method for constructing a bijection from right-swept
trees to staircase tilings.

We start by describing a second new mapping β : Tn → Sn. Rather than using recursion,
this time we declare several rules about the relative positions of rectangles on one hand and
tree nodes on the other. To characterize this mapping, we need several rules which describe
how two labeled nodes attached by an edge of the right-swept tree are translated to two
labeled rectangles in the staircase tiling.
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Figure 16. Images (under α) of the shape of Figure 14 in T12 and A12

Figure 17. Corresponding binary tree and planar tree, under bijection in-
duced by α between arc trees and staircase tilings. This example uses the
staircase tiling from Figure 14 and Figure 15.

(1) Let two nodes be attached by a tree edge with a positive slope, so that node a is a
left child of node b. Then rectangle b will be immediately to the right of rectangle a.
See Figure 19.

(2) For two nodes attached by a negative sloped edge the situation is more complex. If
a right child b is the only child of a root, middle child, or right child a, and b itself
is a leaf or has only a middle or right child, then the rectangle b will be immediately
right of the rectangle corresponding to a. See Figure 20.

(3) However, if a right child is produced from a left child (or as part of a left and
right child), the corresponding rectangle will be immediately below the rectangle
corresponding to the spawning vertex. See Figure 21.

(4) A middle child b will always correspond to a rectangle directly below the rectangle
corresponding to the spawning vertex a. See Figure 22.

(5) There is only one case in which adjacent nodes do not correspond to adjacent rect-
angles: if b is a right child of a, and b has a left child d. Then rectangle b is right
of rectangle a, but Rule 1 is used to place the left child of b (and its left child, etc.)
between rectangles a and b. See Figure 23.
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right-swept

trees

staircase

tilings
arc

trees

(planar rooted)

binary trees

(planar rooted)

 trees

f     f     f o      o   
M      M      M

f     f     f o      o   
R      M      M

f     f     f o      o   
M      R       M

f     f     f o      o   
R       R       M

f     f     f o      o   
L       R       M

Figure 18. Bijections for n = 3. Each row represents a class of objects
mapped to each other, the first three columns by the bijection α and the
last two columns via canonical bijections from the staircase tilings and arc
trees.

Figure 19. Example of Rule 1 (β : Tn → Sn).

Figure 20. Example of Rule 2 (β : Tn → Sn).

This method gives a specific set of instructions at each vertex point for how to proceed
with no ambiguity in the decision-making process. Therefore each tree in Tn will give a
unique structure in Sn.
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Figure 21. Examples of Rule 3 (β : Tn → Sn). Rectangles labeled with a
letter correspond to that node, as shown by the circles.

Figure 22. Example of Rule 4 (β : Tn → Sn).

Figure 23. Example of Rule 5 (β : Tn → Sn). The three circled nodes b, d, c
all correspond to rectangles right of the rectangle corresponding to a.

Figure 24 is a final example for the case that n = 10 for the mapping from Tn to Sn.

Theorem 3.1. The mapping β : Tn → Sn determined by the above rules is a bijection.

Proof. We consider the reverse mapping β−1 : Sn → Tn. In a similar fashion, we develop a
series of rules for this mapping.

(1) If the top-left rectangle goes to the bottom of the figure (i.e. width = 1 unit), the
root spawns a right child. If the top-left rectangle goes to the farthest right edge
(i.e. depth = 1 unit), the root spawns a middle child. This process is repeated as
necessary. See Figure 25.
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Figure 24. A full example for the case n = 10 (β : Tn → Sn).

Figure 25. Examples of Rule 1 (β−1 : Sn → Tn).

(2) If the top-left rectangle has width greater than 1 unit and depth greater than 1
unit, then a limb of left children is formed where the bottom vertex on this limb
corresponds to the left-most rectangle. The length of this limb of left children is
determined by the number of rectangles read from left to right, going as far right as
possible. See Figure 26.

Figure 26. Example of Rule 2 (β−1 : Sn → Tn).
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(3) Any remaining rectangles are treated as right children of the vertex corresponding to
the rectangle directly above and the process repeats with these remaining rectangles
acting as miniature versions of Sn. Notice this rule satisfies the restriction in Tn to
have a right child or a right and left child following a left child. See Figure 27.

Figure 27. Example of Rule 3 (β−1 : Sn → Tn).

As in the previous case, we now illustrate with a final example, the reverse image for the
case n = 10 that we considered earlier. See Figure 28. We use the set of rules developed
here, and see that we arrive at the same pre-image in Tn.

Figure 28. A full example for the case n = 10 (β−1 : Sn → Tn).

Once again, no ambiguity arises from the rules developed above, and so each output of
this algorithm is unique for each unique input.

We now argue that these sets of rules form an inverse function. We define Tier One rules
to be Rules 2 and 4 from the former direction and Rule 1 from the latter direction. We
define Tier Two rules to be Rules 1 and 5 in the former direction and Rule 2 in the latter
direction. We define Tier Three rules to be Rule 3 from the former direction and Rule 3
from the latter direction.

Tier One rules are easily seen to be inverse rules, and when using any Tier One rule from
the outset, the resulting figure in the next step is a new tree or staircase shape with n − 1
vertices or rectangles for Tn and Sn, respectively.

The real key to this process occurs in Tier Two and Tier Three rules. In Tn, the Tier
Two rules occur any time a left child is introduced, whether it is from the root (Rule 1) or
somewhere else in the tree (Rule 5). In Sn, the Tier Two rules occur any time a rectangle
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having width and depth both greater than 1 unit is introduced, either as the top-left rectangle
(corresponding to the root in Tn) or somewhere else in the staircase (corresponding to a
different branch in Tn). These two phases are clearly inverses of each other, since Rules 1
and 5 of Tn imply Rule 2 of Sn and vice versa, and in corresponding sections of the tree and
staircase.

Tier Three rules in Tn occur whenever a right child branches off of a left limb (where
the length of the limb is anywhere from 1 to n − 1 branches). Similarly, Tier Three rules
in Sn occur any time there are leftover rectangles underneath of a Tier Two structure in
Sn. In both Tn and Sn, the process renews itself when Tier Three rules are utilized, leaving
smaller tree and staircase structures of corresponding size, both starting independently with
the same set of rules the larger structure obeys. Therefore, Tier Three rules in Tn imply
Tier Three rules in Sn and vice verse, and in corresponding sections of the tree and staircase.

Breaking down our algorithm into three tiers of rules has allowed us to show that this
function is indeed an inverse function. We therefore have successfully described the bijection
between Sn and Tn. �

3.1. Examples contrasting the bijections. Interestingly, the two bijections α : Tn → Sn
and β : Tn → Sn set up precisely the same correspondence between right-swept trees and
staircase tilings for n = 0, 1, 2. An obvious question is raised: are the two bijections we have
described the same? The answer is no. We see this at n = 3, by comparing the tables in
Figures 29 and 18.

Figure 29. Bijections for n = 3 for the bijection β. Note that the third and
fifth images are switched from those of α in Figure 18.
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The slightly larger example we include next in Figure 30 was suggested by an anonymous
referee, to whom we owe heartfelt thanks for catching early errors. This example is in n = 5.

αβ

Figure 30. Contrasted pre-images of an S5 tiling.

Finally we include here in Figure 31 a larger example to highlight the differences. A tree
from T12 (the same example as in Figure 16) is shown in the center, and then its two images
in S12: on the left is the image of the recursive bijection from Section 2 and on the right the
image of the relative bijection from Section 3.

α

β

Figure 31. Two images of a right-swept tree from T12.

3.2. Sequence referenced. We have referred to OEIS sequence number A000108, the Cata-
lan numbers.
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