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Abstract

We demonstrate how to organize 1-dimensional cellular automata into
an operad of spaces. The nth term C(k) is the space of radius r = k − 1
automata. The operad composition operation involves both automata
composition and shifting of domain. Pointwise operations such as ad-
dition of automata become important when we look at the structure of
the individual terms in the operad, the spaces of automata with a given
radius. Having adopted the discrete topology on such a space, we demon-
strate an action of the little n-cubes operad on (n−1)-dimensional radius
r automata. There are clear applications of this action to parallel pro-
gramming issues. Finally we discuss ways of generalizing both the idea
of an operad of automata and the n-cubes action to higher dimensional
automata, using higher dimensional operads.
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1 Introduction

Let V be a symmetric monoidal category. For our purposes V will be either
the category of sets and set functions or the category of topological spaces and
continuous maps. In both cases the commuting monoidal structure symbolized
by ⊗ is provided by the cartesian product, or cross product, and the unit object
I is the single point.

The two principle components of an operad are a collection, historically a
sequence, of objects in a monoidal category and a family of composition maps.
Operads are often described as paramaterizations of n-ary operations. Peter
May’s original definition of operad in a symmetric (or braided) monoidal cat-
egory [4] has a composition γ that takes the tensor product of the nth object
(n-ary operation) and n others (of various arity) to a resultant that sums the
arities of those others. The nth object or n-ary operation is often pictured as a
tree with n leaves, and the composition appears like this:
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By requiring this composition to be associative we mean that it obeys this
sort of pictured commuting diagram:
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Here is the technical definition.

Definition 1 An operad C in V consists of objects C(j), j ≥ 1, a unit map
J : I → C(1), and composition maps in V

γ : C(k)⊗ (C(j1)⊗ . . .⊗ C(jk)) → C(j)

for k ≥ 1, js ≥ 0 for s = 1 . . . k and
k∑

s=1
js = j. The composition maps obey the

following axioms

1. Associativity: The following diagram is required to commute for all k ≥ 1,

js ≥ 0 and it ≥ 0, and where
k∑

s=1
js = j and

j∑
t=1

it = i. Let gs =
s∑

u=1
ju

and let hs =
gs∑

u=1+gs−1

iu.

C(k)⊗
(

k⊗
s=1

C(js)
)
⊗
(

j⊗
t=1

C(it)
)

γ⊗id //

symmetry

��

C(j)⊗
(

j⊗
t=1

C(it)
)

γ

��
C(i)

C(k)⊗
(

k⊗
s=1

C(js)⊗
(

js⊗
u=1

C(iu+gs−1)
))

id⊗(⊗kγ)

// C(k)⊗
(

k⊗
s=1

C(hs)
)γ

OO
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2. Respect of units is required. The following unit diagrams commute.

C(k)⊗ (⊗kI)

1⊗(⊗kJ )

��

C(k)

C(k)⊗ (⊗kC(1))

γ

88qqqqqqqqqqq

I ⊗ C(k)

J⊗1

��

C(k)

C(1)⊗ C(k)
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2 An operad of cellular automata

Consider 1 dimensional K-valued cellular automata where K is a set of values.
There is an operad C of sets (or discrete topological spaces) where C(k) is the
space of radius r = k − 1 (neighborhood 2r + 1) cellular automata. Thus
C(1) is the space of radius 0 automata, and the unit map J : {1} → C(1)
simply chooses the identity automata. Composition involves both automata
composition and shifting of domain. An element of C(k) is a function f of
2k−1 variables. At times it will be convenient to label these as x1 . . . x2k−1 but
of course the function f is a cellular automata and so is meant to be interpreted
an an update rule, where the ith cell has value ai and the new value a′i =
f(ai−r . . . ai+r). The translation is that old cell value ai will be the variable xr+1.
The operad operation γ : C(k)×(C(j1)×. . .×C(jk)) → C(j) consists of composing
f(x1 . . . x2k−1) with k other ordered functions g1 . . . gk by composing in the odd
variables to get f(g1, x2, g2, x4, g3, . . . x2(k−1), gk). Since we are composing f
with k other automata we will need to describe where these other automata are
evaluated in order to furnish inputs for f. If gn is in C(jn) and thus has radius
rn = jn− 1 and so is a function of 2rn + 1 variables, then the new radius of the
composition of all our automata must be

r′ = j − 1 =
k∑

n=1

jn − 1 =
k∑

n=1

rn + k − 1.

Thus for our composition to give an operad, we need to evaluate gn on a neigh-
borhood centered at the cell location

i−

(
k∑

s=n

rs −
n∑

s=1

rs + k − 2n + 1

)

The even variables x2 . . . x2(k−1) of f are assigned values taken identically from
the cells that lie between the new domains of the functions gn. Specifically then
xn+1 for n odd gets the value of the cell at location

i−

(
k∑

s=n

rs −
n∑

s=1

rs + k − 2n− rn

)
.

This is all most easily seen through an example. In the following figure we are
composing an element of C(4) (a radius 3 automata f) with 4 automata gn,
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where g1 ∈ C(3) (radius 2), g2 ∈ C(2) (radius 1), g3 ∈ C(1) (radius 0), and
g4 ∈ C(2) (radius 1 again.)
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Theorem 1 The sets C(j), the unit map J and the compositions γ described
above form the structure of an operad.

There is also a related family of operads where C(k) is radius n(k − 1) au-
tomata for a whole number n. Just as in the r = k − 1 case where we com-
posed in the variables x2j+1 ; j = 0 . . . k − 1 now we compose in the variables
x2nj+1 ; j = 0 . . . k − 1.

3 n-cubes action on radius r cellular automata

Consider a generalization of {0, 1, . . . k − 1}-valued cellular automata to [0, k)-
valued cellular automata. Addition in this context will always be mod k. There
is a nice way of allowing little (n + 1)-cubes to act on the space of [0, k)-valued
n-dimensional radius r cellular automata. Here is an example of the action
for n = 1. Picture a unit square centered at (0, 1

2 ) with a smaller included
square centered at the location (x, y). Let w be the (horizontal) width of the
smaller square and h be its (vertical) height. Let d = [kx] and v = k(y − h

2 ).
This arrangement will act upon a rule a′i = f with radius r, so a function of
2r+1 variables. These latter we label ai+j for j = −r . . . r. The dimensions and
location of the small square modify the input variables ai+j as follows:

a∗i+j = h(a
i+d+j

2[wr]+1
2r+1

) + v

The new rule is a′i = f(a∗i+j). In effect the width and horizontal displacement
of the included square shrink and shift the domain of f . The height and vertical
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position of the square shrink and shift the inputs of f . If there are m small
squares acting on m rules f1 . . . fm then the new rule is

a′i = f1(a1
i+j) + . . . + fm(am

i+j)

where the superscript on the input variable indicates modification by the re-
spective small square.

Theorem 2 The action of the little 2-cubes on the space of radius r [0, k)-valued
cellular automata described above make that space into an operad algebra of the
2-cubes operad.

With care this can be specialized to the {0, 1, . . . k − 1}-valued case.

4 Higher dimensions and concurrent program-
ming
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