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Introduction

The goal of phylogenetics is to take a finite set of data structures
and to construct a branching diagram that explains how its
elements are related. Biological sets are usually referred to
collectively as taxa–populations, species, individuals or genes–and
elements are assumed to be related genetically and chronologically.
The diagram we will be concerned with is a binary tree with
labeled leaves, known as a phylogenetic tree. Precisely, we consider
a cycle-free simple graph with nodes (vertices) that are either of
degree one (touching a single edge) or degree three, and with a set
of distinct items assigned to the nodes of degree 1–the leaves. The
nodes of degree 3 are unlabeled, and can be thought of as
representing speciation events.
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Introduction

We study a method called balanced minimal evolution. This
method begins with a given set of n items and a symmetric (or
upper triangular) square n × n dissimilarity matrix whose entries
are numerical dissimilarities, or distances, between pairs of items.
From the dissimilarity matrix the balanced minimal evolution
(BME) method constructs a binary tree with the n items labeling
the n leaves. This BME tree has the property that the distances
between its leaves most closely match the given distances between
corresponding pairs of taxa.
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Introduction

More precisely: Let the set of n distinct species, or taxa, be called
S . For convenience we will often let S = [n] = {1, 2, . . . , n}. Let a
vector d be given, having

(n
2

)
real valued components the distances

dij between unordered pairs of distinct taxa i , j ∈ S . There is a
vector x(t) for each binary tree t on leaves S , also having

(n
2

)
components xij (t), one for each pair {i , j} ⊂ S . These components
are ordered in the same way for both vectors, and we will use the
lexicographic ordering: d = 〈d12, d13, . . . , d1n, d23, d24, . . . , dn−1,n〉.
We define: xij = 2n−2−l(i ,j). where l(i , j) is the number of internal
nodes (degree 3 vertices) in the path from leaf i to leaf j .
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Introduction

The BME tree for the vector d is the binary tree t that minimizes
d · x(t) for all binary trees on leaves S . The value of setting up the
question in this way is that it becomes a linear programming
problem. The convex hull of all the vectors x(t) for all binary trees
t on S is a polytope BME(S), hereafter also denoted BME(n) or
Pn . The vertices of Pn are precisely the (2n − 5)!! vectors x(t).
Minimizing our inner product over this polytope is equivalent to
minimizing over its vertices, which correspond to the phylogenetic
trees. This method is consistent, and statistically consistent. In
other words, if a sequence of distance matrices approaches a
distance matrix whose entries are exactly the summed edge lengths
of paths between leaves of a given binary tree T , then the BME
trees on that sequence are guaranteed (in the limit) to match the
given tree topology of T .

Stefan Forcey, Logan Keefe, William Sands. U. Akron. Facets of Balanced Minimal Evolution polytopes.



Phylogenetic tree.
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Rooting with Ceratophyllum, photo: Christian Fischer (CC).
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The Balanced minimal evolution method: ex. tree metric.
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The Balanced minimal evolution method: ex. tree metric.
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The Balanced minimal evolution method: ex. tree metric.

3

1

4

2

7

1 2

3
5

d =    6, 8, 9, 12, 7, 15<                            >

0       6        8        9

6       0       12       7

8       12      0      15

9        7      15       0

     
[             ]

Stefan Forcey, Logan Keefe, William Sands. U. Akron. Facets of Balanced Minimal Evolution polytopes.



The Balanced minimal evolution method: ex. tree metric.
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The Balanced minimal evolution method: ex. tree metric.
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The Balanced minimal evolution method: ex. tree metric.
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The Balanced minimal evolution method: ex. tree metric.
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The Balanced minimal evolution polytope P4.
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The Balanced minimal evolution polytope P5.
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Figure: Two sample vertex trees of P5 with their respective coordinates
shown beneath, followed by all 15 vertex points calculated for n=5, and
the f -vector for P5 as found by polymake.
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Intersecting cherries facet: xab + xbc − xac ≤ 8.
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Intersecting cherry flag: xab + xbc − xac ≤ 8.
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Intersecting cherries facet flag: xab + xbc − xac ≤ 2n−3.
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Caterpillar facet: xab ≥ 1.
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Figure: On the left is a facet of P5 with each vertex labeled by the
caterpillar tree. On the right is the Birkhoff polytope B(3) with vertices
labeled by the corresponding permutation matrices.
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Caterpillar flag: xab ≥ 1.
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Intersection.
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Necklace, or cyclic ordering facets.
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Split faces; split facets.
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table .

n dim. vertices facets facet types number of number of
facets vertices

in facet

3 0 1 0 - - -

4 2 3 3 caterpillar 3 2
intersecting cherries 3 2

5 5 15 52 caterpillar 10 6
intersecting cherries 30 6

necklace 12 5

6 9 105 90262 caterpillar 15 24
intersecting cherries 60 30

(3, 3)-split 10 9

n > 6
(n

2

)− n (2n − 5)!! ? caterpillar
(n

2

)
(n − 2)!

intersecting cherries
(n

2

)
(n − 2) 2(2n − 7)!!

(m, 3)-split
(n

3

)
3(2n − 9)!!

(m, n −m)-split, 2n−1 − (n
2

)
(2m − 3)!!

m > 3 −n − 1 ×(2(n −m)− 3)!!
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Splitohedron.

Together with the equalities
∑

j 6=i xij = 2n−2, we take the
caterpillar, intersecting-cherry, and split inequalities.
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Splitohedron.

Theorem: the Splitohedron is a bounded polytope that is a
relaxation of the BME polytope.

Proof: The split-faces include the cherries where the inequality is
xij ≤ 2n−3, and the caterpillar facets have the inequality xij ≥ 1,

thus the resulting intersection of halfspaces is a bounded polytope

since it is inside the hypercube [1, 2n−3](
n
2).
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Splitohedron.

polytope > print $p->VERTICES;

1 1 2 1 4 2 4 1 2 2 1

1 1 2 4 1 2 1 4 2 2 1

1 1 4 2 1 1 2 4 2 1 2

1 1 1 2 4 4 2 1 2 1 2

1 1 1 4 2 4 1 2 1 2 2

1 1 4 1 2 1 4 2 1 2 2

1 2 1 4 1 2 2 2 1 4 1

1 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 8/3 4/3

1 2 1 1 4 2 2 2 4 1 1

1 4/3 4/3 8/3 8/3 8/3 8/3 4/3 4/3 8/3 4/3

1 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3 4/3 8/3

1 4 1 2 1 1 2 1 2 4 2

1 4 2 1 1 2 1 1 2 2 4

1 8/3 4/3 4/3 8/3 4/3 8/3 4/3 8/3 8/3 4/3

1 2 2 2 2 1 1 4 4 1 1

1 2 2 2 2 1 4 1 1 4 1

1 4/3 8/3 8/3 4/3 8/3 4/3 8/3 4/3 4/3 8/3

1 4/3 8/3 8/3 4/3 4/3 8/3 8/3 4/3 8/3 4/3

1 4 1 1 2 1 1 2 4 2 2

1 8/3 4/3 4/3 8/3 8/3 4/3 4/3 8/3 4/3 8/3

1 8/3 4/3 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3

1 2 2 2 2 4 1 1 1 1 4

1 8/3 8/3 4/3 4/3 4/3 8/3 4/3 4/3 8/3 8/3

1 8/3 8/3 4/3 4/3 4/3 4/3 8/3 8/3 4/3 8/3

1 2 4 1 1 2 2 2 1 1 4

1 4/3 4/3 8/3 8/3 8/3 4/3 8/3 8/3 4/3 4/3

1 4/3 8/3 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3
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Splitohedron.

polytope > print $p->VERTICES;

1 1 2 1 4 2 4 1 2 2 1

1 1 2 4 1 2 1 4 2 2 1

1 1 4 2 1 1 2 4 2 1 2

1 1 1 2 4 4 2 1 2 1 2

1 1 1 4 2 4 1 2 1 2 2

1 1 4 1 2 1 4 2 1 2 2

1 2 1 4 1 2 2 2 1 4 1

1 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3 8/3 4/3

1 2 1 1 4 2 2 2 4 1 1

1 4/3 4/3 8/3 8/3 8/3 8/3 4/3 4/3 8/3 4/3

1 4/3 8/3 4/3 8/3 8/3 8/3 4/3 4/3 4/3 8/3

1 4 1 2 1 1 2 1 2 4 2

1 4 2 1 1 2 1 1 2 2 4

1 8/3 4/3 4/3 8/3 4/3 8/3 4/3 8/3 8/3 4/3

1 2 2 2 2 1 1 4 4 1 1

1 2 2 2 2 1 4 1 1 4 1
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1 4 1 1 2 1 1 2 4 2 2

1 8/3 4/3 4/3 8/3 8/3 4/3 4/3 8/3 4/3 8/3

1 8/3 4/3 8/3 4/3 8/3 4/3 4/3 4/3 8/3 8/3

1 2 2 2 2 4 1 1 1 1 4
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1 8/3 8/3 4/3 4/3 4/3 4/3 8/3 8/3 4/3 8/3

1 2 4 1 1 2 2 2 1 1 4
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Thanks!

Advertisement:
http://www.math.uakron.edu/~sf34/hedra.htm
Questions and comments?
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