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Abstract. Acyclonestohedra are generalisations of Stasheff associahedra and graph

associahedra defined on the data of a partially ordered set or, more generally, an acyclic

realisable matroid on a building set. Recently it has been shown that associahedra

admit non-simple truncation into cosmohedra that encode the flat-space cosmological

wavefunction coefficients of tr(𝜙3) theory. We show the acyclonestohedra also admit a

non-simple truncation: into acyclonesto-cosmohedra, also called poset cosmohedra in

the poset case. Each face of the poset cosmohedron is labelled by a nested nesting of the

poset. This extended abstract describes the resulting combinatorics; the full paper has

more to say about physical motivation. As part of the proof sketch, we demonstrate here

that acyclonesto-cosmohedra can be obtained as sections of graph cosmohedra.

Keywords: acyclonestohedron, positive geometries, polytope, cosmohedron, oriented

matroid

1 Introduction and Summary
The acyclonestohedra [11] provide a large class of polytopes whose faces are products

of polytopes in the same class. This family includes, as special cases, the classical

associahedron which describes the scattering amplitudes of biadjoint 𝜙3
theory [1], as

well as the graph associahedra of [5] that appear in cosmological contexts [2]. They also

encompass the poset associahedra of [8], which have not yet found application to physical

processes.

We generalise the construction of graph cosmohedra in [9] to define acyclonesto-

cosmohedra; these further generalise the classical cosmohedron in [2]. The key realisation

is that for any polytope with faces indexed by nested sets, the nested sets themselves come

equipped with a Hasse diagram which can be further imbued with its own nesting. These

ideas are advertised in Figure 1. We provide evidence that acyclonesto-cosmohedra can be

obtained as sections of graph cosmohedra, this generalises similar observations made for

the acyclonestohedra in [11].

This paper is organised as follows. In section 2, we review the definition of acyclonesto-

hedra. In section 3, we associate generalisations of the cosmohedron to acyclonestohedra

and present realisations and examples thereof.

‗
sforcey@uakron.edu.

mailto:sforcey@uakron.edu


2 Forcey, Glew and Kim

a
b

c

d e

f

{ a, b, c, d, e, f }

{ c, d, e, f }

{ d, f }

{ d }

a
b c d e

f

{ a, b, c, d, e, f }

{ c, d, e, f }

{ d, f }

{ d }

{ a, b, c, d, e, f }

{ c, d, e, f }

{ d, f }

{ a, b, c, d, e, f }

{ d, f }

{ d }

{ a, b, c, d, e, f }

{ c, d, e, f }

{ d, f }

{ d }

{ a, b, c, d, e, f }

{ c, d, e, f }

{ d, f }

{ d }

{ a, b, c, d, e, f }

{ d, f }

{ a, b, c, d, e, f }

{ c, d, e, f }

{ d, f }

{ a, b, c, d, e, f }

{ d, f }

{ d }

{ a, b, c, d, e, f }

{ c, d, e, f }

{ d, f }

{ d }

Figure 1: The acyclonestohedron (top-left) and associated acyclonesto-cosmohedron

(mid-right) for nestings of the poset 𝐾2,3 (center top). The acyclonestohedron is shown as

a realisation in [13], and both polytopes as realisations here in Figure 3. One vertex of

each polytope is circled, with the corresponding maximal nesting 𝜏 of 𝐾2,3 (center left)

and maximal nested nesting (𝜏,𝒩) top-right, and below, zoomed in to see face inclusion.
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2 Acyclonestohedra and their realisation
We begin by defining building sets and nestings, which generalise the notion of tubes and

tubings on a graph. In general, the terms nesting, nested set, tubing, and piping are closely

related: the first two are synonymous and the the second two are specializations to graphs

and posets respectively.

Definition 1 ([12, 6, 7]). A building set ℬ on a ground set 𝑆 is a collection of nonempty

subsets of 𝑆 such that

• for any 𝑠 ∈ 𝑆, then {𝑠} ∈ ℬ;

• whenever 𝐵, 𝐵′ ∈ ℬ with 𝐵 ∩ 𝐵′ ≠ ∅, then 𝐵 ∪ 𝐵′ ∈ ℬ.

A connected component of a building set (𝑆,ℬ) is an inclusion-maximal element of ℬ; the set

of connected components is denoted by max(ℬ) ⊆ ℬ. A nesting 𝒩 of a building set ℬ is a

subset max(ℬ) ⊆ 𝒩 ⊆ ℬ such that

• whenever 𝐵, 𝐵′ ∈ 𝒩 , then either 𝐵 ⊆ 𝐵′ 𝐵′ ⊆ 𝐵 or 𝐵 ∩ 𝐵′ = ∅;

• for any finite collection of pairwise disjoint elements 𝐵1, . . . , 𝐵𝑘 ∈ 𝒩 (with 𝑘 > 1),

then 𝐵1 ∪ · · · ∪ 𝐵𝑘 ∉ ℬ.

The collection of nestings {𝒩 \max(ℬ) |𝒩 is nesting} under reverse inclusion define the

poset of faces of a convex polytope called the nestohedron. The facets of the nestohedron are

labelled by nestings of the form {𝐵} for 𝐵 ∈ ℬ. These facets factorise into products of two

nestohedra defined on the restriction and contraction of ℬ to {𝐵}. Where, for any subset

𝑅 ⊆ 𝑆, the restriction ℬ |𝑅 and contraction ℬ/𝑅 of ℬ to 𝑆 are defined as the building sets

ℬ |𝑅 B {𝐵 ∈ ℬ | 𝐵 ⊆ 𝑅}, ℬ/𝑅 B {𝐵 \ 𝑅 |𝑅 ⊉ 𝐵 ∈ ℬ}. (2.1)

Definition 2. A signed set 𝑋 = (𝑋, 𝜎 is a Z2-graded set, i.e. a set 𝑋 together with a an

assignment of signs 𝜎 : 𝑋 → {+1,−1} to every element. We may formally write such a

set as 𝑋 = 𝑋+ − 𝑋− = 𝑥1 + 𝑥2 + · · · − 𝑦1 − 𝑦2 − · · · where 𝑥1, 𝑥2, . . . ∈ 𝑋+
are the elements

with degree +1 and 𝑦1, 𝑦2, . . . ∈ 𝑋−
are the elements with degree −1; thus −𝑋 = 𝑋− −𝑋+

is the signed set with all degrees reversed. An oriented matroid (𝑆,𝒞) on a finite set 𝑆 is a

collection of signed sets (called signed circuits) 𝒞 such that

• ∅ ∉ 𝒞

• if 𝐶 ∈ 𝒞 , then −𝐶 ∈ 𝒞

• if 𝑋 ∈ 𝒞 ∋ 𝑌, and 𝑋+ ∪𝑋− = 𝑌+ ∪𝑌−
, then 𝑋 = 𝑌 or 𝑋 = −𝑌

• if 𝑋,𝑌 ∈ 𝒞 with 𝑋 ≠ −𝑌 and 𝑠 ∈ 𝑋+ ∩ 𝑌−
, then there exists a 𝑍 ∈ 𝒞 such that

𝑍± ⊂ (𝑋± ∪𝑌±) \ {𝑒}.
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Given a subset 𝑅 ⊆ 𝑆, the restriction (𝑆,𝒞) |𝑅 and contraction (𝑆,𝒞)/𝑅 are the oriented

matroids given by

(𝑆,𝒞) |𝑅 B (𝑅, {𝐶 ∈ 𝒞 |𝐶+ ∪ 𝐶− ⊆ 𝑅}), (2.2)

(𝑆,𝒞)/𝑅 B (𝑆 \ 𝑅, {(𝐶+ \ 𝑅) − (𝐶− \ 𝑅) |𝐶 ∈ 𝒞}) (2.3)

respectively. An oriented matroid is acyclic if it does not have a signed circuit whose

elements are all positive.

Definition 3 ([11]). An oriented building set (𝑆,ℬ,𝒞) is a building set (𝑆,ℬ) together with

an oriented matroid (𝑆,𝒞) on the same ground set 𝑆. An acyclic nesting of an oriented

building set (𝑆,ℬ,𝒞) is a nesting 𝒩 ⊂ ℬ of (𝑆,ℬ) such that, for every 𝐵 ∈ 𝒩 , the oriented

matroid

(
(𝑆,𝒞) |𝐵

)
/⋃{𝑁∈𝒩 |𝑁⊊𝐵} is acyclic (the notation

⋃
means the union of all elements of

a collection of sets, and ⊊ denotes proper subset.) When (𝑆,𝒞) is realisable, the collection

{𝒩 \ maxℬ |𝒩 is an acyclic nesting} under reverse inclusion is the poset of faces of a

convex polytope called the acyclonestohedron of (𝑆,ℬ,𝒞).

From the definition, it follows that the unique codimension 0 face (the interior of

the polytope) is the unique nesting maxℬ (which is trivially acyclic), whilst the facets

(codimension 1 faces) are in canonical bĳection with those sets 𝐵 ∈ ℬ such that the oriented

matroids (𝑆,𝒞) |𝐵 and (𝑆,𝒞)/𝐵 are both acyclic, and the vertices (maximal-codimension

faces) are in canonical bĳection with acyclic nestings that are maximal under inclusion.

If the oriented matroid (𝑆,𝒞) is realised by the vectors (𝑎𝑖)𝑖∈𝑆 that span a 𝑘-dimensional

vector space, the dimension of the acyclonestohedron is given by 𝑘 − |maxℬ |, where

|maxℬ | is the number of connected components of ℬ. Given a realisable oriented building

set (𝑆,ℬ,𝒞) and a facet given by 𝐵 ∈ ℬ such that (𝑆,𝒞) |𝐵 and (𝑆,𝒞)/𝐵 are both acyclic, then

the facet of the acyclonestohedron corresponding to 𝐵 factorises as

facet for 𝐵 = acyclonestohedron for (𝑆,ℬ |𝐵,𝒞 |𝐵) × acyclonestohedron for (𝑆,ℬ/𝐵,𝒞/𝐵).

This may be applied recursively to higher-codimension faces.

Example 1 ([8]). Given a poset 𝑃, let the set of its covers be 𝑆 B {(𝑖, 𝑗) ∈ 𝑃2 | 𝑖 ≺· 𝑗}; this

is, equivalently, the set of edges of the Hasse diagram 𝐺 of 𝑃. On 𝑆, we may construct

the building set (𝑆,ℬ) associated to the line graph 𝐿(𝐺) as well as the realisable oriented

matroid (𝑆,𝒞) associated to the digraph structure of 𝐺. Then the acyclonestohedron

corresponding to the oriented building set (𝑆,ℬ,𝒞) is the Galashin poset associahedron

for 𝑃. The building set can be described as the pipes, or connected convex subposets, and

the nestings, or pipings, are collections of pipes that are pairwise nested or disjoint, and for

which any subset, if collapsed, will produce an acyclic collapse of the Hasse diagram.
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2.1 ABHY-like realisations of acyclonestohedra
The mathematics literature [13, 11] contains realisations of acyclonestohedra in terms of

intersections of half-spaces that generalise the ABHY-like realisations of graph associahedra

given in [9].

Suppose that we are given an oriented building set (𝑆,ℬ,𝒞) and that 𝒞 is realised by

a collection of vectors 𝑎𝑖 ∈ 𝑉∗
that span a finite-dimensional real vector space 𝑉∗

. For

each 𝐵 ∈ ℬ such that (𝑆,𝒞) |𝐵 and (𝑆,𝒞)/𝐵 are both acyclic, define the kinematic variable

𝑋𝐵 : 𝑉 → R as the affine function

𝑋𝐵 =

∑
𝑖∈𝐵

𝑎𝑖 −
∑
𝐵′∈ℬ
𝐵′⊆𝐵

𝑐𝐵′, (2.4)

where the 𝑐𝐵 are nonnegative real numbers (the cut parameters) for each 𝐵 ∈ ℬ, chosen such

that 𝑐𝐵 > 0 is a positive real number whenever 𝐵 contains more than one element and

𝑐𝐵 = 0 whenever 𝐵 contains only one element. In particular, we have a cut parameter 𝑐𝜅 for

each connected component 𝜅 ∈ maxℬ. Note that the 𝑋𝐵 are not linearly independent if

the vectors 𝑎𝑖 realising the oriented matroid (𝑆,𝒞) are not linearly independent; one has

the relations ∑
𝑖∈𝐵

𝜆𝑖
©­­«𝑋𝐵 −

∑
𝐵′∈ℬ
𝐵′⊆𝐵

𝑐𝐵′
ª®®¬ = 0 whenever

∑
𝑖∈𝐵

𝜆𝑖𝑎𝑖 = 0. (2.5)

Then the ABHY-like realisation of the acyclonestohedron is given by the set of points 𝑣 ∈ 𝑉
such that

𝑋𝐵(𝑣) ≥ 0 for every 𝐵 ∈ ℬ such that (𝑆,𝒞) |𝐵 and (𝑆,𝒞)/𝐵 are acyclic

𝑋𝜅(𝑣) = 0 for every 𝜅 ∈ maxℬ.

(2.6)

This manifestly generalises the ABHY-like realisation for graph associahedra given in [9].

On the other hand, when the vectors realising the oriented matroid are not all linearly

independent, we must impose additional conditions on the cut parameters 𝑐𝐵 in addition

to their positivity. A sufficient condition to satisfy these exotic kinematic constraints is to

impose

𝑐𝐵 ≪ 𝑐𝐵′ (2.7)

whenever |𝐵| < |𝐵′|; to be precise, it suffices to have 𝑐𝐵′/𝑐𝐵 ≤ 𝑅, where 𝑅 > 1 is a certain

constant depending only on (𝑆,ℬ,𝒞) [11, Def. 2.16].

3 Acyclonesto-cosmohedra
In this section, we associate to every acyclonestohedron a non-simple polytope called the

acyclonesto-cosmohedron that generalises the cosmohedron for Stasheff associahedra [2] and

graph cosmohedra [9].
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3.1 Definition of acyclonesto-cosmohedra
Intuitively, in a cosmohedron, each face of the original positive geometry is refined into a

poset of faces. Since faces in the acyclonestohedron correspond to nestings, it follows that

we are to associate a nesting to a nesting, that is, to construct nested nestings; the poset of

such nested nestings then define the acyclonesto-cosmohedron.

More concretely, recall that, for any acyclic nesting 𝜏 ⊆ ℬ on an oriented building set

(𝑆,ℬ,𝒞), the elements of 𝜏 are partially ordered by inclusion. The Hasse diagram of the

poset (𝜏,⊆) is a rooted forest due to the requirement of elements in 𝜏 to be pairwise nested

or disjoint, with the roots given by maxℬ. (Since we are dealing with forests (acyclic

graphs), the orientation does not matter, and the resulting building set will be the same as

the building set on the line graph 𝐿(𝐺𝜏) of the Hasse diagram 𝐺𝜏 of (𝜏,⊆).) This naturally

leads to the following definition.

Definition 4. Given a building set (𝑆,ℬ), a nested nesting (𝜏,𝒩) is a nesting 𝜏 ⊆ ℬ together

with a nesting 𝒩 ⊆ 𝒫({(𝑖, 𝑗) ∈ 𝜏 × 𝜏 | 𝑖 ≺· 𝑗}) on (the Hasse diagram of) the poset (𝜏,⊆).
Nested nestings are ordered by operations of collapsing a nest that is minimal in the poset

𝒩 (the edges are contracted and the nodes are identified, and given the label of the largest

nest) or discarding a non-maximal nest of 𝒩 . That is, given two nested nestings (𝜏,𝒩) and

(𝜏′,𝒩 ′), then (𝜏′,𝒩 ′) ⪯ (𝜏,𝒩) means that 𝒩 ′
is formed from 𝒩 by repeatedly collapsing a

minimal nest or discarding a non-maximal nest. Note that this implies that 𝜏′ ⊆ 𝜏. The

acyclonesto-cosmohedron for the realisable oriented building set (𝑆,ℬ,𝒞) is a polytope

whose poset of faces is equivalent to the poset of nested nestings on (𝑆,ℬ,𝒞) (with the

relation ⪯ reversed).

An acyclic nesting 𝜏 of the acyclonestohedron may be identified with the nested nesting

(𝜏, conn(𝐿(𝐺𝜏))), where 𝐺𝜏 is the Hasse diagram of (𝜏,⊆) and conn(𝐿(𝐺𝜏)) is the (collection

of sets of vertices of) connected components of the line graph of 𝐺𝜏 (or, equivalently,

the collection of sets of edges of each connected components of 𝐺𝜏, ignoring one-vertex

connected components).

This is superficially different from the definition based on ‘regions’ in previous literature

[2, 9]; however, explicit computation shows that they agree. The regions associated to a

nested nesting (𝜏,𝒩) are in bĳection with the elements of 𝒩 ; each 𝑁 ∈ 𝒩 is a set consisting

of pairs (𝑖, 𝑗) ∈ 𝜏 × 𝜏 with 𝑖 ⪯ 𝑗, and the region corresponding to 𝑁 is then the ‘union’ of

the formal differences 𝑗 \ 𝑖. For the case of the classical cosmohedron of [2], we show the

correspondence between collections of subpolygons (Russian dolls) and nested nestings in

Figure 2.

An advantage of the present definition is that it generalises readily: one can consider

nested nested nestings, nested
3

nestings, and so on, to obtain iterated cosmohedra (if such

iterated nestings in fact are polytopal).

The acyclonesto-cosmohedron also satisfies a factorisation property generalising that



Acyclonesto-cosmohedra 7

abcd

abc

ab

b

a

b c

d

abcde

abc

ca

e

a

b

c

d

e

Figure 2: The maximal nested nestings here are on the building set from a path graph or

totally ordered poset. They are paired with their corresponding pictures of subpolygon

collections from [2].

given in [9]. A facet of the acyclonesto-cosmohedron 𝐶(𝑆,ℬ,𝒞) for the oriented nested

complex (𝑆,ℬ,𝒞) is given by a nesting 𝜏 ⊆ ℬ, and we have the factorisation for a facet ℱ𝜏:

ℱ𝜏 = 𝐴𝜏 ×
∏
𝐵∈𝜏

𝐶((𝑆,ℬ,𝒞) |𝐵)/⋃{𝑁∈𝜏 |𝑁⊊𝐵} (3.1)

where 𝐴𝜏 is the poset associahedron for the poset (𝜏,⊆)1 and 𝐶((𝑆,ℬ,𝒞) |𝐵)/⋃{𝑁∈𝜏 |𝑁⊊𝐵} is the

acyclonesto-cosmohedron associated to the oriented building set ((𝑆,ℬ,𝒞) |𝐵)/⋃{𝑁∈𝜏 |𝑁⊊𝐵}
(this is the same restriction–contraction found in definition 3).

3.1.1 Face combinatorics and simplicity

In what follows we will assume that the building set has only one connected component.

For any nested nesting (𝜏,𝒩) the codimension of the face of the acyclonesto-cosmohedron

labelled by that nested nesting is the number of nests in 𝒩 , always including the improper

nest. That is, the dimension of a face is 𝑑 − |𝒩 |. Then any facet (𝜏,𝒩) of an acyclonesto-

cosmohedron has 𝒩 = {𝜏}. We often simply draw this as the nesting 𝜏. A facet which

corresponds to a maximal nesting 𝜏 is combinatorially equivalent to the Galashin poset

associahedron 𝐴𝜏. A poset of nests in a nesting always has a Hasse diagram which is a tree.

Thus as shown in [3] a facet equivalent to 𝐴𝜏 is in fact an operahedron, as defined in [10]. In

fact, all the poset associahedra 𝐴𝜏 occurring in the factorisation of faces just described are

operahedra.

We use the same facts to bound the degree of any vertex of the acyclonesto-cosmohedron

and to generalise the fact mentioned in [2] that the cosmohedra are non-simple as polytopes.

1
Or, equivalently, the graph associahedron for the line graph of the Hasse diagram of (𝜏,⊆); this line

graph is called the spine in [9, (3.10)].
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In the acyclonesto-cosmohedron, a vertex is a maximal nesting 𝜏 with a maximal nesting

𝒩 of its Hasse diagram. Edges incident on that vertex are labelled via dropping a proper

nest from 𝒩 or by collapsing a minimal nest of 𝒩 . In a 𝑑-dimensional acyclonestohedron,

a maximal nesting will have 𝑑 + 1 nests. Then the tree (or forest) of these tubes contains at

most ⌊(𝑑 + 1)/2⌋ minimal nests, all a single edge. This maximum occurs for instance when

the Hasse diagram is linear, a totally ordered poset. (That in turn does occur if the building

set is from a simple graph; it may not be the case when the building set is from a general

hypergraph.) Thus for the acyclonesto-cosmohedron in this case, there is a maximum of

⌊(3𝑑 − 1)/2⌋ edges incident to such a vertex. Thus in this case it is always a non-simple

polytope for dimension 𝑑 > 2.

The minimum degree of a vertex is of course the dimension 𝑑. That is always seen to

occur for some vertices of the acyclonesto-cosmohedron, since we can find vertices (𝜏,𝒩)
where 𝒩 is totally nested (for each tree). In this case there is only one minimal nest, and so

the number of incident edges is 𝑑 − 1+ 1 = 𝑑.

3.2 ABHY-like realisation of acyclonesto-cosmohedra
The acyclonesto-cosmohedra can be realised in an ABHY-like fashion as intersections of

half-spaces. It is shown in [11] that acyclonestohedra can be obtained as sections of graph

associahedra. The same holds true for acyclonesto-cosmohedra for posets, that is, they can

be obtained as sections of the graph cosmohedra associated to the line graph of the Hasse

diagram of that poset.

Realization: Suppose that we are given an oriented building set (𝑆,ℬ,𝒞) where (𝑆,𝒞)
is realised by a collection of vectors 𝑎𝑖 ∈ 𝑉∗

that span a finite-dimensional real vector space

𝑉∗
. For each acyclic nesting 𝜏 ⊆ ℬ, define the kinematic variable 𝑌𝜏 : 𝑉 → R as the affine

function

𝑌𝜏 =
∑
𝐵∈𝜏

𝑋𝐵 −
∑
𝐵∈𝜏

𝛿𝐵\⋃{𝑁∈𝜏 |𝑁⊊𝐵}, (3.2)

where 𝛿𝐵\⋃{𝑁∈𝜏 |𝑁⊊𝐵} is a positive real number (additional cut parameters) associated to

the subset 𝐵 \⋃{𝐵′ ∈ 𝜏 | 𝐵′ ⊊ 𝐵}, and where 𝑋𝐵 was defined in (2.4).

Then the ABHY-like realisation of the acyclonesto-cosmohedron is given by the set of

points 𝑣 ∈ 𝑉 such that

𝑌𝜏(𝑣) ≥ 0 for every acyclic nesting 𝜏 ⊆ ℬ
𝑋𝜅(𝑣) = 0 for every 𝜅 ∈ maxℬ.

(3.3)

(Of course, one also always has the additional equations (2.5) for the linear dependence

amongst the 𝑋𝐵.) For this to realise the acyclonesto-cosmohedron, there are additional

inequalities that must be satisfied by the cut parameters 𝛿 and 𝑐; it suffices to have

𝛿𝑆′ ≪ 𝛿𝑆′′, and 𝛿𝑆′ ≪ 𝑐𝐵, for |𝑆′| < |𝑆′′| and for all 𝐵, in addition to (2.7). (3.4)
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Figure 3: Explicit realisations for the acyclonestohedron (left) and its associated

acyclonesto-cosmohedron (center) for the 𝐾2,3 poset discussed in Example 4. The

poset cosmohedron for the diamond poset (right) realised as a section of the graph

cosmohedron for the four-cycle.

Proof sketch: The proof for the validity of our realization is straightforward for the

case of poset cosmohedra, if we assume that we can begin with the realization of the

graph cosmohedra as defined in [9], and follow the logic of the proof for the realization of

poset associahedra in [11]. Note that the cosmohedron for a cycle-free, tree-like, poset is

precisely the graph cosmohedron for the line graph of the Hasse diagram of that poset.

For the acyclic restriction of a general poset we show 1) that the nested nestings of the

poset cosmohedron are combinatorially equivalent as a poset to the acyclic restriction of

the associated line graph cosmohedron; 2) that our realization is actually a cross section

of the graph cosmohedron (an intersection with the hyperplane determined by the cycle

equalities); and 3) that this cross section intersects faces of the graph cosmohedron if and

only if those cells correspond to acyclic nestings.

3.3 Examples of acyclonesto-cosmohedra
The cosmohedron for the Stasheff associahedron can be seen as the acyclonesto-cosmohedron

for the (totally) ordered linear poset. For the undirected simple graphs, the graph cosmo-

hedra are described in [9].

Example 2 (Diamond poset). The poset shown in Figure 4 has oriented building set:

𝑆 = {a, b, c, d}, 𝒞 = {±a± c∓ d∓ b} , ℬ = 𝒫(𝑆) \ {∅, {a, d}, {b, c}} , (3.5)

with one trivial nesting, {𝑆}, and 12 non-trivial nestings:

• six nestings that correspond to facets of the acyclonestohedron, of the form {𝑆, 𝐵} for

𝐵 ∈ ℬ \ {{a, c}, {b, d}} with |𝐵| ≤ 2. (The would-be facets {𝑆, {a, c}} and {𝑆, {b, d}}
violate the acyclicity condition.)
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• six nestings that correspond to vertices of the acyclonestohedron:

{𝑆, {a, b}, {a}}, {𝑆, {a, b}, {b}}, {𝑆, {c, d}, {c}},

{𝑆, {c, d}, {d}}, {𝑆, {a}, {d}}, {𝑆, {b}, {c}}.

The Hasse diagrams for all nestings are path graphs, so we have one trivial nested nesting,

({𝑆},∅), and the following non-trivial nested nestings:

• the six nestings that correspond to facets of the acyclonestohedron each admit a

unique nested nesting. For example, to the nesting {𝑆, {a, b}}, we can associate the

nested nesting ({𝑆, {a, b}}, {{({a, b}, 𝑆)}}).

• the six nestings that correspond to facets of the acyclonestohedron each correspond to

three nested nestings, for 18 total. For example, the nesting {𝑆, {a}, {d}} corresponds

to the nested nestings

({𝑆, {a}, {d}}, {{({a}, 𝑆)}, {({a}, 𝑆), ({d}, 𝑆)}}),

({𝑆, {a}, {d}}, {{({d}, 𝑆)}, {({a}, 𝑆), ({d}, 𝑆)}}),
and ({𝑆, {a}, {d}}, {{({a}, 𝑆), ({d}, 𝑆)}}).

Therefore, the acyclonesto-cosmohedron for the diamond poset is a dodecagon. The

ABHY-like realisation of the corresponding acyclonesto-cosmohedron is as follows:

𝑌{𝑆,{a,b},{a}} = 𝑋𝑆 + 2𝑋{a} +𝑋{b} − 𝑐{a,b} − 𝛿{a} − 𝛿{b} − 𝛿{c,d} ≥ 0

𝑌{𝑆,{a,b},{b}} = 𝑋𝑆 +𝑋{a} + 2𝑋{b} − 𝑐{a,b} − 𝛿{a} − 𝛿{b} − 𝛿{c,d} ≥ 0

𝑌{𝑆,{a,b}} = 𝑋𝑆 +𝑋{a} +𝑋{b} − 𝑐{a,b} − 𝛿{a,b} − 𝛿{c,d} ≥ 0

𝑌{𝑆,{c,d},{c}} = 𝑋𝑆 + 2𝑋{c} +𝑋{d} − 𝑐{c,d} − 𝛿{c} − 𝛿{d} − 𝛿{a,b} ≥ 0

𝑌{𝑆,{c,d},{d}} = 𝑋𝑆 +𝑋{c} + 2𝑋{d} − 𝑐{c,d} − 𝛿{c} − 𝛿{d} − 𝛿{a,b} ≥ 0

𝑌{𝑆,{c,d}} = 𝑋𝑆 +𝑋{c} +𝑋{d} − 𝑐{a,b} − 𝛿{a,b} − 𝛿{c,d} ≥ 0

𝑌{𝑆,{a},{d}} = 𝑋𝑆 +𝑋{a} +𝑋{d} − 𝛿{b,c} − 𝛿{a} − 𝛿{d} ≥ 0

𝑌{𝑆,{b},{c}} = 𝑋𝑆 +𝑋{b} +𝑋{c} − 𝛿{a,d} − 𝛿{b} − 𝛿{c} ≥ 0

𝑌{𝑆,{a}} = 𝑋𝑆 +𝑋{a} − 𝛿{a} − 𝛿{b,c,d} ≥ 0

𝑌{𝑆,{b}} = 𝑋𝑆 +𝑋{b} − 𝛿{b} − 𝛿{a,c,d} ≥ 0

𝑌{𝑆,{c}} = 𝑋𝑆 +𝑋{c} − 𝛿{c} − 𝛿{a,b,d} ≥ 0

𝑌{𝑆,{d}} = 𝑋𝑆 +𝑋{d} − 𝛿{d} − 𝛿{a,b,c} ≥ 0

𝑋𝑆 = 𝑋{a} +𝑋{b} +𝑋{c} +𝑋{d} − 𝑐{a,b} − 𝑐{c,d} − 𝑐{a,b,c,d} = 0

𝑋{a} −𝑋{b} +𝑋{c} −𝑋{d} = 0.

(3.6)

which indeed defines a dodecagon provided that the inequalities (2.7) and (3.4) hold.
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Figure 4: The poset associahedron for the diamond poset is pictured on the left, and its

acyclonesto-cosmohedron is the dodecagon. This dodecagon is realized as a section of

the graph cosmohedron for 𝐶4, as illustrated in Figure 3.

Example 3 (Simplex/Permutohedron/Permutoassociahedron). The building set on 𝑆 = [𝑛]
with a single maximal element, 𝑆, has as nestohedron the 𝑛-simplex. The Hasse diagrams

of the maximal nestings are claw graphs, and nestings of those will always be totally

nested. Thus the acyclonesto-cosmohedron in this case will be simple, and will recapture

the combinatorics of the permutohedron, as pointed out in [9].

The poset associahedron for a claw poset (𝑛−1 minimal nodes all covered by an 𝑛𝑡ℎ node)

is an (𝑛 − 2) -dimensional permutohedron. Again every maximal nesting of the claw poset is

totally nested, so the corresponding facets of the acyclonesto-cosmohedron are copies of the

associahedron. Thus the acyclonesto-cosmohedron is indeed the permutoassociahedron.

This example is already seen via its line graph, the complete graph, in [9].

Example 4 (𝐾2,3). The poset with three maximal nodes, two minimal nodes, and all

covering relations between them is pictured in Figure 1. Explicit realisations of both the

acyclonestohedron and acyclonesto-cosmohedron for this case are shown in Figure 3. Note

that the acyclonestohedron has three octagonal facets and its acyclonesto-cosmohedron

has three 16-gons. As well, every maximal nesting of the poset 𝐾2,3 is totally nested, so

that the corresponding facets of the acyclonesto-cosmohedron are pentagonal: copies of

the two-dimensional associahedron, which is the operahedron on the linear tree.
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3.3.1 Future directions

We note that our constructions extend easily to other combinatorial polytopes that are

based on a nested set paradigm, such as poset associahedra of [4], where again the Hasse

diagram of each tubing is a tree. Multi-associahedra with multi-tubings of the path graph

as combinatorial labels (corresponding to multidiagonalizations of polygons) can also be

given a nested nesting structure. In that case the nested nesting itself would need to be

acyclic, since the Hasse diagram of a multitubing can contain cycles.
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