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Abstract. Acyclonestohedra are generalisations of Stasheff associahedra and graph
associahedra defined on the data of a partially ordered set or, more generally, an acyclic
realisable matroid on a building set. Recently it has been shown that associahedra
admit non-simple truncation into cosmohedra that encode the flat-space cosmological
wavefunction coefficients of tr(¢p>) theory. We show the acyclonestohedra also admit a
non-simple truncation: into acyclonesto-cosmohedra, also called poset cosmohedra in
the poset case. Each face of the poset cosmohedron is labelled by a nested nesting of the
poset. This extended abstract describes the resulting combinatorics; the full paper has
more to say about physical motivation. As part of the proof sketch, we demonstrate here
that acyclonesto-cosmohedra can be obtained as sections of graph cosmohedra.

Keywords: acyclonestohedron, positive geometries, polytope, cosmohedron, oriented
matroid

1 Introduction and Summary

The acyclonestohedra [11] provide a large class of polytopes whose faces are products
of polytopes in the same class. This family includes, as special cases, the classical
associahedron which describes the scattering amplitudes of biadjoint ¢ theory [1], as
well as the graph associahedra of [5] that appear in cosmological contexts [2]. They also
encompass the poset associahedra of [#], which have not yet found application to physical
processes.

We generalise the construction of graph cosmohedra in [0] to define acyclonesto-
cosmohedra; these further generalise the classical cosmohedron in [2]. The key realisation
is that for any polytope with faces indexed by nested sets, the nested sets themselves come
equipped with a Hasse diagram which can be further imbued with its own nesting. These
ideas are advertised in Figure 1. We provide evidence that acyclonesto-cosmohedra can be
obtained as sections of graph cosmohedra, this generalises similar observations made for
the acyclonestohedra in [11].

This paper is organised as follows. In section 2, we review the definition of acyclonesto-
hedra. In section 3, we associate generalisations of the cosmohedron to acyclonestohedra
and present realisations and examples thereof.
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Figure 1: The acyclonestohedron (top-left) and associated acyclonesto-cosmohedron
(mid-right) for nestings of the poset K33 (center top). The acyclonestohedron is shown as
a realisation in [13], and both polytopes as realisations here in Figure 3. One vertex of
each polytope is circled, with the corresponding maximal nesting 7 of K;3 (center left)
and maximal nested nesting (7, N) top-right, and below, zoomed in to see face inclusion.
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2 Acyclonestohedra and their realisation

We begin by defining building sets and nestings, which generalise the notion of tubes and
tubings on a graph. In general, the terms nesting, nested set, tubing, and piping are closely
related: the first two are synonymous and the the second two are specializations to graphs
and posets respectively.

Definition 1 ([12, 6, 7]). A building set 8 on a ground set S is a collection of nonempty
subsets of S such that

e forany s € S, then {s} € B;
e whenever B,B’ € 8 with BN B’ # @, then BUB’ € 8.

A connected component of a building set (S, 8) is an inclusion-maximal element of B; the set
of connected components is denoted by max(8) C B. A nesting N of a building set B is a
subset max(8B) C N C B such that

e whenever B,B’ € N, then either BC B’B’C Bor BNB’ = @;

e for any finite collection of pairwise disjoint elements By, ...,Br € N (with k > 1),
then BiU---UBy ¢ B.

The collection of nestings { N \ max(8)| N is nesting} under reverse inclusion define the
poset of faces of a convex polytope called the nestohedron. The facets of the nestohedron are
labelled by nestings of the form {B} for B € 8. These facets factorise into products of two
nestohedra defined on the restriction and contraction of B to {B}. Where, for any subset
R C S, the restriction B g and contraction B of B to S are defined as the building sets

B = {Be B|BC R}, B/r = {B\R|R 2 Be B} (2.1)

Definition 2. A signed set X = (X, 0 is a Zp-graded set, i.e. a set X together with a an
assignment of signs 0: X — {+1,-1} to every element. We may formally write such a
setas X = X" - X" =x14+x2+ - —y1—Yy2— - where x1,xp,... € X* are the elements
with degree +1 and y1, vz, ... € X~ are the elements with degree —1; thus - X = X~ - X*
is the signed set with all degrees reversed. An oriented matroid (S,C) on a finite set S is a
collection of signed sets (called signed circuits) C such that

c 2¢C
e if CeC,then-CeC
e ifXeCaY,and XTUX =Y"UY ,thenX=Yor X =-Y

e if X, Y e Cwith X # =Y and s € XTNY", then there exists a Z € C such that
Z* C (XFUY*H)\{e}.
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Given a subset R C S, the restriction (S,C)|r and contraction (S,C)/r are the oriented
matroids given by

(S,C)jr = (R,{CeC|CtUC™ CR}), (2.2)
(S,C)r = (S\R{(CT\R)-(C"\R)|C€eC}) (2.3)

respectively. An oriented matroid is acyclic if it does not have a signed circuit whose
elements are all positive.

Definition 3 ([11]). An oriented building set (S, 8B, C) is a building set (S, B) together with
an oriented matroid (S, C) on the same ground set S. An acyclic nesting of an oriented
building set (S, B,C) is a nesting N C B of (S, B) such that, for every B € N, the oriented
matroid ((S, Q) B) JU{NEN | NCE} is acyclic (the notation | means the union of all elements of
a collection of sets, and C denotes proper subset.) When (S, C) is realisable, the collection
{N \ max8B| N is an acyclic nesting} under reverse inclusion is the poset of faces of a
convex polytope called the acyclonestohedron of (S, B,C).

From the definition, it follows that the unique codimension 0 face (the interior of
the polytope) is the unique nesting max 8 (which is trivially acyclic), whilst the facets
(codimension 1 faces) are in canonical bijection with those sets B € 8 such that the oriented
matroids (S,C) g and (S,C),p are both acyclic, and the vertices (maximal-codimension
faces) are in canonical bijection with acyclic nestings that are maximal under inclusion.

If the oriented matroid (S, C) is realised by the vectors (a;);cs that span a k-dimensional
vector space, the dimension of the acyclonestohedron is given by k — | max 8|, where
| max B | is the number of connected components of 8. Given a realisable oriented building
set (5, 8,C) and a facet given by B € B such that (S,C) g and (S, C),p are both acyclic, then
the facet of the acyclonestohedron corresponding to B factorises as

facet for B = acyclonestohedron for (S, 85, C|p) X acyclonestohedron for (S, 8/p,C/p).

This may be applied recursively to higher-codimension faces.

Example 1 ([2]). Given a poset P, let the set of its covers be S := {(i,j) € P?|i < j}; this
is, equivalently, the set of edges of the Hasse diagram G of P. On S, we may construct
the building set (S, 8) associated to the line graph L(G) as well as the realisable oriented
matroid (S, C) associated to the digraph structure of G. Then the acyclonestohedron
corresponding to the oriented building set (S, 8, C) is the Galashin poset associahedron
for P. The building set can be described as the pipes, or connected convex subposets, and
the nestings, or pipings, are collections of pipes that are pairwise nested or disjoint, and for
which any subset, if collapsed, will produce an acyclic collapse of the Hasse diagram.
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2.1 ABHY-like realisations of acyclonestohedra

The mathematics literature [17, 11] contains realisations of acyclonestohedra in terms of
intersections of half-spaces that generalise the ABHY-like realisations of graph associahedra
given in [9].

Suppose that we are given an oriented building set (S, 8,C) and that C is realised by
a collection of vectors 4; € V* that span a finite-dimensional real vector space V*. For
each B € 8 such that (S,C) g and (S,C),p are both acyclic, define the kinematic variable
Xp: V — R as the affine function

Xp = Z aj— Z CB, (2.4)

i€eB B’eB
B’CB

where the cp are nonnegative real numbers (the cut parameters) for each B € B, chosen such
that cp > 0 is a positive real number whenever B contains more than one element and
cg = 0 whenever B contains only one element. In particular, we have a cut parameter c, for
each connected component k¥ € max 8. Note that the Xp are not linearly independent if
the vectors a; realising the oriented matroid (S, C) are not linearly independent; one has
the relations

Z Ai| Xg — Z cp' | = 0 whenever Z Aja; = 0. (2.5)
i€eB g’eié i€eB
ds

Then the ABHY-like realisation of the acyclonestohedron is given by the set of points v € V
such that
Xp(v) > 0 for every B € 8B such that (S,C) g and (S, C),p are acyclic

.6
Xy (v) = 0 for every x € max B. (2.6)

This manifestly generalises the ABHY-like realisation for graph associahedra given in [9].
On the other hand, when the vectors realising the oriented matroid are not all linearly
independent, we must impose additional conditions on the cut parameters cp in addition
to their positivity. A sufficient condition to satisfy these exotic kinematic constraints is to
impose

Cp X Cpr (2.7)
whenever |B| < |B’[; to be precise, it suffices to have cp'/cp < R, where R > 1 is a certain
constant depending only on (S, 8,C) [11, Def. 2.16].

3 Acyclonesto-cosmohedra

In this section, we associate to every acyclonestohedron a non-simple polytope called the
acyclonesto-cosmohedron that generalises the cosmohedron for Stasheff associahedra [2] and
graph cosmohedra [0].
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3.1 Definition of acyclonesto-cosmohedra

Intuitively, in a cosmohedron, each face of the original positive geometry is refined into a
poset of faces. Since faces in the acyclonestohedron correspond to nestings, it follows that
we are to associate a nesting to a nesting, that is, to construct nested nestings; the poset of
such nested nestings then define the acyclonesto-cosmohedron.

More concretely, recall that, for any acyclic nesting T C B on an oriented building set
(S,8B,C), the elements of 7 are partially ordered by inclusion. The Hasse diagram of the
poset (1, C) is a rooted forest due to the requirement of elements in 7 to be pairwise nested
or disjoint, with the roots given by max 8. (Since we are dealing with forests (acyclic
graphs), the orientation does not matter, and the resulting building set will be the same as
the building set on the line graph L(G:) of the Hasse diagram G of (7, C).) This naturally
leads to the following definition.

Definition 4. Given a building set (S, 8), a nested nesting (7, N) is a nesting © C 8B together
with a nesting N € P({(i,j) € t X 1|i < j}) on (the Hasse diagram of) the poset (7, C).
Nested nestings are ordered by operations of collapsing a nest that is minimal in the poset
N (the edges are contracted and the nodes are identified, and given the label of the largest
nest) or discarding a non-maximal nest of N. That is, given two nested nestings (7, V') and
(v, N’), then (7', N’) < (1, N) means that N’ is formed from N by repeatedly collapsing a
minimal nest or discarding a non-maximal nest. Note that this implies that 7" C 7. The
acyclonesto-cosmohedron for the realisable oriented building set (S, 8,C) is a polytope
whose poset of faces is equivalent to the poset of nested nestings on (S, 8, C) (with the
relation < reversed).

An acyclic nesting 7 of the acyclonestohedron may be identified with the nested nesting
(t,conn(L(G))), where G is the Hasse diagram of (7, €) and conn(L(G)) is the (collection
of sets of vertices of) connected components of the line graph of G; (or, equivalently,
the collection of sets of edges of each connected components of G, ignoring one-vertex
connected components).

This is superficially different from the definition based on ‘regions’ in previous literature
[2, 0]; however, explicit computation shows that they agree. The regions associated to a
nested nesting (7, V) are in bijection with the elements of N; each N € N is a set consisting
of pairs (i,j) € T X T with i < j, and the region corresponding to N is then the ‘union’ of
the formal differences j \ i. For the case of the classical cosmohedron of [>], we show the
correspondence between collections of subpolygons (Russian dolls) and nested nestings in
Figure 2.

An advantage of the present definition is that it generalises readily: one can consider
nested nested nestings, nested3 nestings, and so on, to obtain iterated cosmohedra (if such
iterated nestings in fact are polytopal).

The acyclonesto-cosmohedron also satisfies a factorisation property generalising that
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Figure 2: The maximal nested nestings here are on the building set from a path graph or
totally ordered poset. They are paired with their corresponding pictures of subpolygon
collections from [2].

given in [0]. A facet of the acyclonesto-cosmohedron Cs g c) for the oriented nested

complex (S, B,C) is given by a nesting T C B, and we have the factorisation for a facet %:

Fr=Ar X l_[ C((SrB/C)IB)/U{NerlNgB} (3.1)

Bet

where A, is the poset associahedron for the poset (7, S)" and C(S,8,0) 5)Uiner| Nesy 1S the
acyclonesto-cosmohedron associated to the oriented building set ((S, 8, C) )/ {Ner| NcB}
(this is the same restriction—contraction found in definition 3).

3.1.1 Face combinatorics and simplicity

In what follows we will assume that the building set has only one connected component.
For any nested nesting (7, NV) the codimension of the face of the acyclonesto-cosmohedron
labelled by that nested nesting is the number of nests in N, always including the improper
nest. That is, the dimension of a face is d — |N/|. Then any facet (7, N) of an acyclonesto-
cosmohedron has N = {t}. We often simply draw this as the nesting 7. A facet which
corresponds to a maximal nesting 7 is combinatorially equivalent to the Galashin poset
associahedron A;. A poset of nests in a nesting always has a Hasse diagram which is a tree.
Thus as shown in [3] a facet equivalent to A; is in fact an operahedron, as defined in [10]. In
fact, all the poset associahedra A; occurring in the factorisation of faces just described are
operahedra.

We use the same facts to bound the degree of any vertex of the acyclonesto-cosmohedron
and to generalise the fact mentioned in [2] that the cosmohedra are non-simple as polytopes.

*Or, equivalently, the graph associahedron for the line graph of the Hasse diagram of (7, C); this line
graph is called the spine in [9, (3.10)].
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In the acyclonesto-cosmohedron, a vertex is a maximal nesting T with a maximal nesting
N of its Hasse diagram. Edges incident on that vertex are labelled via dropping a proper
nest from N or by collapsing a minimal nest of NV. In a d-dimensional acyclonestohedron,
a maximal nesting will have d + 1 nests. Then the tree (or forest) of these tubes contains at
most | (d +1)/2] minimal nests, all a single edge. This maximum occurs for instance when
the Hasse diagram is linear, a totally ordered poset. (That in turn does occur if the building
set is from a simple graph; it may not be the case when the building set is from a general
hypergraph.) Thus for the acyclonesto-cosmohedron in this case, there is a maximum of
| (34 —1)/2] edges incident to such a vertex. Thus in this case it is always a non-simple
polytope for dimension d > 2.

The minimum degree of a vertex is of course the dimension d. That is always seen to
occur for some vertices of the acyclonesto-cosmohedron, since we can find vertices (7, N)
where N is totally nested (for each tree). In this case there is only one minimal nest, and so
the number of incident edgesisd —1+1 =d.

3.2 ABHY-like realisation of acyclonesto-cosmohedra

The acyclonesto-cosmohedra can be realised in an ABHY-like fashion as intersections of
half-spaces. It is shown in [11] that acyclonestohedra can be obtained as sections of graph
associahedra. The same holds true for acyclonesto-cosmohedra for posets, that is, they can
be obtained as sections of the graph cosmohedra associated to the line graph of the Hasse
diagram of that poset.

Realization: Suppose that we are given an oriented building set (S, 8,C) where (S, C)
is realised by a collection of vectors a; € V* that span a finite-dimensional real vector space
V*. For each acyclic nesting T C 8, define the kinematic variable Y;: V' — R as the affine

function
Y = Z Xp— Z OB\J{Ner|NCB}/ (3-2)

Bet Bet
where 0p\(j{Ner| NcB) 1S @ positive real number (additional cut parameters) associated to
the subset B \ |J{B’ € t| B’ C B}, and where X was defined in (2.4).
Then the ABHY-like realisation of the acyclonesto-cosmohedron is given by the set of
points v € V such that

Y:(v) > 0 for every acyclic nesting 1 C B

Xy (v) = 0 for every k € max B. (33)

(Of course, one also always has the additional equations (2.5) for the linear dependence
amongst the Xp.) For this to realise the acyclonesto-cosmohedron, there are additional
inequalities that must be satisfied by the cut parameters 6 and c; it suffices to have

Os < 0g», and 0gr < cp, for |S’| < |S”| and for all B, in addition to (2.7).  (3.4)
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Figure 3: Explicit realisations for the acyclonestohedron (left) and its associated
acyclonesto-cosmohedron (center) for the K3 poset discussed in Example 4. The
poset cosmohedron for the diamond poset (right) realised as a section of the graph
cosmohedron for the four-cycle.

Proof sketch: The proof for the validity of our realization is straightforward for the
case of poset cosmohedra, if we assume that we can begin with the realization of the
graph cosmohedra as defined in [0], and follow the logic of the proof for the realization of
poset associahedra in [11]. Note that the cosmohedron for a cycle-free, tree-like, poset is
precisely the graph cosmohedron for the line graph of the Hasse diagram of that poset.
For the acyclic restriction of a general poset we show 1) that the nested nestings of the
poset cosmohedron are combinatorially equivalent as a poset to the acyclic restriction of
the associated line graph cosmohedron; 2) that our realization is actually a cross section
of the graph cosmohedron (an intersection with the hyperplane determined by the cycle
equalities); and 3) that this cross section intersects faces of the graph cosmohedron if and
only if those cells correspond to acyclic nestings.

3.3 [Examples of acyclonesto-cosmohedra

The cosmohedron for the Stasheff associahedron can be seen as the acyclonesto-cosmohedron
for the (totally) ordered linear poset. For the undirected simple graphs, the graph cosmo-
hedra are described in [9].

Example 2 (Diamond poset). The poset shown in Figure 4 has oriented building set:
S ={a,b,c,d}, C={tatc¥dFb}, B =P(S)\{2,{a, d},{b,c}}, (3-5)
with one trivial nesting, {S}, and 12 non-trivial nestings:

* six nestings that correspond to facets of the acyclonestohedron, of the form {S, B} for
B e 8\ {{a,c},{b,d}} with |B| < 2. (The would-be facets {S,{a, c}} and {S, {b,d}}
violate the acyclicity condition.)
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* six nestings that correspond to vertices of the acyclonestohedron:

{S,{a,b},{a}},  {S{ab},{b}}, {5 {cd} {c}},
{S{cd {d}},  {S{a}{d}}, {5 {b} {c}}.

The Hasse diagrams for all nestings are path graphs, so we have one trivial nested nesting,
({S}, @), and the following non-trivial nested nestings:

¢ the six nestings that correspond to facets of the acyclonestohedron each admit a
unique nested nesting. For example, to the nesting {S, {a, b}}, we can associate the

nested nesting ({S, {a,b}}, {{({a, b}, S)}}).

* the six nestings that correspond to facets of the acyclonestohedron each correspond to
three nested nestings, for 18 total. For example, the nesting {S, {a}, {d}} corresponds
to the nested nestings

({S,{a}, {d}}, {{({a}, 5)}, {({a}, 5), ({d}, S)}}),

({S, {a} {d}}, {{{d}, 5)}, {({a}, 5), ({d}, 5)}}),
and ({5, {a}, {d}}, {{({a}, S), ({d}, S)}}).

Therefore, the acyclonesto-cosmohedron for the diamond poset is a dodecagon. The
ABHY-like realisation of the corresponding acyclonesto-cosmohedron is as follows:

V(s {ab}fa)) = Xs +2X(a} + X{p} — C(ap) — Ofa} = Ofp) — Ofca) 2 0
(s {ab}, (b)) = X5 + X(a) +2X(p} = C(ap) ~ Ofa) = Ofp) — Ofca} 2 0
Yis(aby} = Xs + X(a} + X(b) = C{ab) = Ofab} = Ofca} = 0
Yis {ca) i)y = Xs +2X(e} + X{a) — C{c,a) ~ Ofc} — Oga)y — Ofap) 2 0
Yis {capqayy = Xs + X(c) +2X(a) = C{c,a) ~ Ofc} — Oga) —Ofap) 2 0
Yis {capy = Xs + X} + X(a} — C(ap) ~ 0fap} = Ocay 2 0
Yis {ap qap) = Xs + X(a) + X(a) = Op,c} — Ofa) = 0(ay 2 0 (3.6)
(s, (b} {c)y = Xs + Xip) + X(c} = Oaa) = Ofp) =0(cj 2 0
Yis,fayy = Xs + X{a} = 0(a) = Ofpca) 2 0
Yis,{byy = Xs + X{py = O(p) = Ofaca) 2 0
Yis {cyy = X5+ X{c} = Ofc} = Ofapay 2 0
Yis,{ayy = Xs + X{ay = Oqa) = Ofapc) 2 0
Xs = X(a} + X(py + X{(c} + X{a) ~ C{ap} = C{cd} ~ Clapca) =0
X{a)y = X(p) + X(c} = X(a} = 0.

which indeed defines a dodecagon provided that the inequalities (2.7) and (3.4) hold.
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Figure 4: The poset associahedron for the diamond poset is pictured on the left, and its
acyclonesto-cosmohedron is the dodecagon. This dodecagon is realized as a section of
the graph cosmohedron for Cy, as illustrated in Figure 3.

Example 3 (Simplex/Permutohedron/Permutoassociahedron). The building seton S = [n]
with a single maximal element, S, has as nestohedron the n-simplex. The Hasse diagrams
of the maximal nestings are claw graphs, and nestings of those will always be totally
nested. Thus the acyclonesto-cosmohedron in this case will be simple, and will recapture
the combinatorics of the permutohedron, as pointed out in [9].

The poset associahedron for a claw poset (1 — 1 minimal nodes all covered by an n th node)
isan (1 — 2) -dimensional permutohedron. Again every maximal nesting of the claw poset is
totally nested, so the corresponding facets of the acyclonesto-cosmohedron are copies of the
associahedron. Thus the acyclonesto-cosmohedron is indeed the permutoassociahedron.
This example is already seen via its line graph, the complete graph, in [0].

Example 4 (K73). The poset with three maximal nodes, two minimal nodes, and all
covering relations between them is pictured in Figure 1. Explicit realisations of both the
acyclonestohedron and acyclonesto-cosmohedron for this case are shown in Figure 3. Note
that the acyclonestohedron has three octagonal facets and its acyclonesto-cosmohedron
has three 16-gons. As well, every maximal nesting of the poset K33 is totally nested, so
that the corresponding facets of the acyclonesto-cosmohedron are pentagonal: copies of
the two-dimensional associahedron, which is the operahedron on the linear tree.



12 Forcey, Glew and Kim

3.3.1 Future directions

We note that our constructions extend easily to other combinatorial polytopes that are
based on a nested set paradigm, such as poset associahedra of [/], where again the Hasse
diagram of each tubing is a tree. Multi-associahedra with multi-tubings of the path graph
as combinatorial labels (corresponding to multidiagonalizations of polygons) can also be
given a nested nesting structure. In that case the nested nesting itself would need to be
acyclic, since the Hasse diagram of a multitubing can contain cycles.
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