
©2017

WILLIAM ALVAH SANDS

ALL RIGHTS RESERVED

PHYLOGENETIC INFERENCE USING A DISCRETE-INTEGER LINEAR

PROGRAMMING MODEL

A Thesis

Presented to

The Graduate Faculty of The University of Akron

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

William Alvah Sands

May, 2017

PHYLOGENETIC INFERENCE USING A DISCRETE-INTEGER LINEAR

PROGRAMMING MODEL

William Alvah Sands

Thesis

Approved:

Advisor
Dr. Stefan Forcey

Faculty Reader
Dr. Malena Español

Faculty Reader
Dr. J. Patrick Wilber

Department Chair
Dr. Timothy Norfolk

Accepted:

Dean of the College
Dr. John Green

Dean of the Graduate School
Dr. Chand Midha

Date

ii

ABSTRACT

Combinatorial methods have proved to be useful in generating relaxations of poly-

topes in various areas of mathematical programming. In this work, we propose a

discrete-integer linear programming model for a recent version of the Phylogeny Esti-

mation Problem (PEP), known as the Balanced Minimal Evolution Method (BME).

We begin by examining an object known as the Balanced Minimal Evolution Polytope

and several classes of geometric constraints that result in its relaxation. We use this

information to develop the linear program and propose two Branch and Bound algo-

rithms to solve the model. The second algorithm takes advantage of a heuristic known

as a large neighborhood search. We provide experimental results for both algorithms,

using perfect and noisy data, as well as suggestions for further improvement.

iii

ACKNOWLEDGEMENTS

Firstly, I would like to provide my deepest gratitude to my advisor, mentor, and

friend, Dr. Stefan Forcey. I am incredibly blessed to have had the opportunity to

work with someone so supportive and encouraging during my time at the university.

I would also like to extend my gratitude to Dr. Español and Dr. Wilber for their time

in reviewing this work and all of their valuable suggestions.

I would also like to thank my fellow students Luke, Mackenzie, Marissa,

Cody, Wiley, and Oliver, who have been instrumental in my academic and personal

development. At times when I felt like a failure, they were always there to provide

good humor and lift my spirits. I can only hope to find such good friends as I begin

my journey in graduate school at Michigan State.

Most importantly, I would like to mention my incredible parents and Lauren

for all of their incredible support and time in listening to me complain about nearly

everything. Words, literally, cannot express my gratitude for how much you all have

done for me. Thank you for being so understanding of my work-filled nights.

Lastly, I would like to thank coffee, without which, this work would not have

been completed. Your caffeine has allowed me to be more ”productive” than could

possibly be conceived.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

CHAPTER

I. THE BALANCED MINIMAL EVOLUTION PROBLEM 1

1.1 Definitions . 4

1.2 Notation . 7

II. THE RELAXATION . 9

2.1 The BME Polytope . 9

2.2 The Splitohedron . 11

III. MODELING WITH LINEAR PROGRAMMING 17

3.1 Conventions for Linear Programming Models 17

3.2 The Discrete Integer Linear Programming Model 19

3.3 Excluding the Four-Point Condition 20

IV. THE BRANCH AND BOUND ALGORITHM 22

4.1 Structure of the Algorithm . 22

4.2 Branch Selection Strategy . 28

4.3 Large Neighborhood Search and the Tolerance Parameter 29

v

V. NUMERICAL RESULTS AND CONCLUSIONS 32

5.1 Numerical Implementation . 32

5.2 Error Metrics . 33

5.3 Results . 36

5.4 Future Considerations . 40

BIBLIOGRAPHY . 43

APPENDIX . 45

vi

LIST OF TABLES

Table Page

2.1 This table contains some statistics for BME(n). The number of
facets for BME(n) remains an open problem. Notice that the total
number of facets from n = 5 to n = 6 increases drastically. 10

2.2 We provide some statistics for the inequalities used in our relaxation,
Sp(n), based on [8]. Notice that the facets of first three classes of
inequalities grow polynomially in n, while the facets for (k,m)-splits
grow exponentially in n. The Kraft Equalities appear in all faces of
the polytope, so they trivially contain all of the vertices. 16

5.1 Results for both the pure Branch and Bound algorithm (top) and
Branch and Bound using the LNS heuristic (bottom), using perfect data. 38

5.2 Results for both the pure Branch and Bound algorithm (top) and
Branch and Bound using the LNS heuristic (bottom), using noisy data. 39

vii

LIST OF FIGURES

Figure Page

1.1 A complex example of a rooted phylogenetic tree. The connections
between taxa indicate a common ancestor [11]. 2

1.2 A simple example of an unrooted, binary phylogenetic tree for n =
7. Each taxon is associated with a labeling 1, 2, . . . , 7. This is a
caterpillar tree because we have exactly two cherries. 6

1.3 A ternary tree can be transformed into a binary tree using an in-
sertion process. Here, the dashes indicate null edges and nodes.
We avoid labeling the taxa because the ternary tree on the left has
multiple binary representations. 6

2.1 Two Caterpillar Faces for BME(5). These constraints force a lower
bound on xij, which corresponds to an upper bound on the topo-
logical distance lij. These particular faces were studied in [7]. 12

2.2 A visualization of an intersecting cherry facet for BME(5), presented
in [7]. The vertices in this facet include any tree which contains
{a, b} or {b, c} as cherries. 14

4.1 An example of a Branch and Bound binary search tree. Active
nodes follow along the indicated blue path, while fathomed nodes
are labeled in black. 23

4.2 Main algorithm for the Discrete ILP problem. The algorithm decides
to call a particular branching function depending on whether or not
we use a heuristic. 25

4.3 Branching algorithm for pure Branch and Bound. 26

4.4 Branching algorithm using a LNS heuristic. Once we specify a tol-
erance, the algorithm determines if a decision variable can be fixed
before branching. 27

viii

CHAPTER I

THE BALANCED MINIMAL EVOLUTION PROBLEM

Phylogenetics is the study of evolutionary relationships among classes of organisms,

which we call taxa. Understanding such relationships allows us to better under-

stand evolutionary processes, infer particular driving forces behind such changes, and

predict how these relationships will change in the future. This could influence conser-

vation efforts to maintain genetic diversity, as well as the designs for new medicine.

In particular, phylogenetics has proven to be useful in the design of vaccines for

viruses that mutate relatively fast. These relationships are commonly described us-

ing a weighted tree called a phylogeny, which indicates shared relationships among

taxa; however, a given problem may involve large numbers of possible phylogenetic

trees. Among the set of admissible candidates, we have to decide which one pro-

vides the best representation of the input data. This is commonly referred to as the

Phylogeny Estimation Problem (PEP). Utilizing molecular data collected from DNA,

RNA, amino acids, etc. allows us to determine weights, which measure dissimilarity

between pairs of taxa. Distance-based methods are a class of techniques that use this

information to help select the best tree that is represented by our molecular data.

The BME method, which we consider in this problem, asserts that the best candi-

date has the minimum weighted path length. An advantage of the BME method is

1

Figure 1.1: A complex example of a rooted phylogenetic tree. The connections be-

tween taxa indicate a common ancestor [11].

that it is known to be statistically consistent. This means that as we obtain more

information related to the dissimilarity of species, then our solution approaches the

true tree representing that data. Furthermore, the correct tree can be recovered even

in instances of missing or corrupted data, provided that the error is within bounds.

Various methods for obtaining solutions have been proposed over the course

of several decades (See [4] for a survey of current methods). In [17], Saitou and

Nei suggested a popular greedy algorithm, known as Neighbor-Joining (NJ), which

runs in polynomial time. The primary disadvantage is that this greedy, bottom-up

approach, often obtains the incorrect tree. Developments by Gascuel and Steel [10],

2

such as FastME, work in a similar fashion, but use more sophisticated operations

called edge moves that make the approach more robust. While these algorithms are

capable of handling a large number of taxa (e.g. 100), there is a significant trade-off

between performance and accuracy. The need for faster, more accurate methods,

has led us to undertake this work. Mixed-integer programming formulations, such

as those presented in [5, 9], are currently being studied as a means towards greater

accuracy in solving the BME problem. Catanzaro et al. proposed a model that uses

binary decision variables according to whether or not an edge is present in the tree.

Their model’s constraints were derived using properties of the graphs being studied,

while our formulation utilizes collections of facets from the BME Polytope described

in [7, 8]. The particular approach used in developing the branch and bound routine

for our algorithm is similar to the algorithm proposed in [13], despite significant

differences in the problem structure.

In 2000, Pauplin [14] showed how to rapidly calculate the length of a phyloge-

netic tree without having to resort to branch length calculations. This work presented

a path length function derived from bifurcations in phylogenetic trees. Recently, it

was discovered that minimizing this length, which we define later, over the set of

phylogenetic trees is equivalent to minimizing over a geometric object known as the

Balanced Minimal Evolution Polytope [12]. Thus, the problem can be reformulated

in terms of mathematical programming. While linear programming tends to be slow

in comparison to these implicit enumeration schemes, the advantage is that, to a cer-

tain degree, we have the ability to control performance and accuracy. Our work seeks

3

to provide a more balanced approach that allows the user to obtain a more accurate

solution in a reasonable amount of CPU time. Later, we discuss these control options.

1.1 Definitions

Before we begin, we need to provide some basic definitions and terminology that will

be useful for our purposes.

A graph G is a set of vertices V , together with a set of edges E , such that

every element in E is of the form {x, y} with x, y ∈ V . To simplify this, we often

say G = (V , E). If the pairs of vertices are unordered, we say that G is undirected.

Generally speaking, the graphs we discuss are typically used to describe the rela-

tions between objects. In applications, graphs are used to model connections be-

tween a set of objects, called nodes, with a particular connection indicated by the

presence of a shared edge. In our problem, the nodes represent taxa or branching

points in an evolutionary network, while the edges represent lineages. We say that

a graph has a cycle if there is a sequence in the edge set of the graph of the form

{{x1, x2}, {x2, x3}, ..., {xN , x1}}. A graph is called a tree if it contains no cycles; if we

moved the graph within its plane, it should resemble a tree.

Descriptions of the underlying connectivity structure of a tree, without regard

to the labeling, is referred to as the tree’s topology. We will call the vertices associated

with only one edge taxa (or leaves) and the vertices associates with three edges,

internal nodes. We say a tree is binary if every internal node has degree 3 (i.e. every

parent node has two children). A phylogenetic tree is an undirected binary tree with

4

labeled taxa. Phylogenetic trees can either be rooted or unrooted. The choice of a root

is more or less arbitrary for our purposes, though it typically requires some known

information about the network a priori (See Figure 1.2 for an example). To simplify

our problem, we assume that we are working only with binary trees as opposed to the

more general M-ary trees. It is known that any M-ary tree can be transformed into a

binary tree by inserting dummy vertices and edges with null weight (See Figure 1.3).

We can also describe the subtrees of a phylogenetic tree. A clade of a phylogenetic

tree is a subset of the tree where an edge is chosen, and everything on one side of

the edge is thrown away to create a subtree. Consequently, a cherry is a clade with

2 taxa.

5

1

2

3 4 5

6

7

Figure 1.2: A simple example of an unrooted, binary phylogenetic tree for n = 7.

Each taxon is associated with a labeling 1, 2, . . . , 7. This is a caterpillar tree because

it has exactly two cherries.

Figure 1.3: A ternary tree can be transformed into a binary tree using an insertion

process. Here, the dashes indicate null edges and nodes. We avoid labeling the taxa

because the ternary tree on the left has multiple binary representations.

6

1.2 Notation

Much of the notation used in the existing literature on the BME method tends to

vary, despite the underlying similarities. Our convention is as follows:

Define S = {1, 2, ..., n} to be a list of distinct taxa that we wish to consider.

Each element in S is a natural number, which corresponds to an individual taxon.

Let the dissimilarity vector d with
(
n
2

)
components be given, where each entry dij is

positive and represents the dissimilarity between taxa i and j for each pair {i, j} ⊂ S.

This vector is obtained using molecular data, typically provided by biologists and

geneticists. Let T be the set of all binary phylogenetic trees without edge weights.

Then, for each tree t ∈ T , there is a corresponding vector x(t) with
(
n
2

)
components

xij(t) for each pair {i, j} ⊂ S. Following Pauplin [14], we define

xij(t) := 2n−2−lij(t), (1.1)

where lij(t) is the number of internal nodes (degree 3 vertices) in the path connecting

i and j in t. The additional factor of 2n−2 is used to rescale Pauplin’s original coor-

dinates, so that floating point errors are eliminated in the numerical computations.

We use a lexicographic ordering of the entries

b =
(
b12, b13, ..., b1n, b23, b24, ...b2n, ..., b(n−1)n

)
for vectors d and x. If we are provided a binary tree T with non-negative weights

on the edges, then we can calculate d by adding the weights on each of the edges

connecting the path from i to j in T . Once we have calculated d, we can determine

7

the rescaled length of T using the path-length functional

L(T) :=
∑
i,j
i<j

dij2
n−2−lij(T). (1.2)

Using our definition in (1.1), we can rewrite (1.2) as

L(T) = dT · x(T). (1.3)

Since T is its own BME tree, we are left to compute a single dot product. However,

our task here is to find the BME tree represented by an arbitrary dissimilarity vector

d using data that is potentially missing or corrupted. Therefore, we must extend

this definition to handle any tree t ∈ T using a slight modification of (1.3). The

penultimate form of our functional is

L(t) = d · x(t). (1.4)

Here, L(t) will be minimized precisely when the minimizer t∗ has the same topology

as T and will be larger, otherwise. Using (1.1), we can equivalently describe the

structure of a tree t by its unique vector representation x(t). This allows us to

minimize (1.4) over x(t), with the minimizer, now, being x(t∗). Observe that our

rescaling will not affect the solution obtained through the minimization procedure.

In general, the minimizer is unique, provided it does not contain edge weights that

are identically equal to zero. In the latter case, we will have a finite collection of trees

that minimize L(t) simultaneously [8]. More detail on the minimization strategy and

the technicalities of the problem is provided later in this work.

8

CHAPTER II

THE RELAXATION

2.1 The BME Polytope

An important aspect of our formulation involves particular restrictions on the so-

lutions we seek. These requirements can be developed by studying the topological

properties of the trees belonging to T . Pair-wise distances on phylogenetic trees

have a structure that allows us to treat them as points in R(n
2). However, for a set

S, containing n taxa, one can show that there are exactly (2n − 5)!! potential trees

that belong to T (See Table 2.1 for details). Minimizing our path length functional

over each of these points would require us to construct the vector x that describes

the topology of every tree in T , in addition to their corresponding path lengths. A

useful result presented in [12], states that minimizing over the set of trees in T is

equivalent to minimizing over the convex hull of T . Thus, taking the convex hull of

these points, denoted Conv(T), we arrive at the BME Polytope, here after denoted

as BME(n). Informally, the convex hull can be thought of as a shrink-wrapping op-

eration that encloses each of the points representing admissible candidates in hyper-

planes. Equivalently, we can define a polytope as the intersection of half-spaces, using

linear inequalities that describe the structure of the outermost faces called facets. If

9

Taxa Dimension Vertices Facets

3 0 1 0

4 2 3 3

5 5 15 52

6 9 105 90262

n
(
n
2

)
− n (2n− 5)!! ?

Table 2.1: This table contains some statistics for BME(n). The number of facets for

BME(n) remains an open problem. Notice that the total number of facets from n = 5

to n = 6 increases drastically.

an inequality can be used to describe a facet, we call it a facet inequality. Facet

inequalities allow us to implicitly maintain some of the geometric information of the

trees without the need to explicitly determine x directly from a tree.

Polytopes have rich applications in mathematical programming problems,

where the constraints take the form of inequalities. This allows us to reformulate the

BME Problem as a linear programming problem where both the objective function

and the constraint functions are linear. In this context, the BME Polytope represents

the feasible region that is described by these inequalities. Consequently, obtaining

a complete description of a polytope is often difficult. By complete, we mean that

for every facet of the polytope, there exists a corresponding facet inequality that

10

describes it. Furthermore, collections of facets for polytopes are often exponential or

factorial in size, which are impractical for mathematical programming formulations.

To circumvent this, we can consider a subset of the inequalities defining the complete

polytope, which we call a relaxation.

2.2 The Splitohedron

The NP nature of the BME problem, as noted in [5], suggests that a complete de-

scription of the polytope is unlikely. Fortunately, we can develop relaxations of the

BME Polytope using various combinations of the known facet inequalities. The per-

formance of an algorithm can be greatly influenced by both the number of variables,

commonly called decision variables, as well as the number of constraints defining the

feasible region. Therefore, it is highly desirable to maintain a polynomial-sized for-

mulation, meaning the input to the algorithm we use depends polynomially on the

number of taxa being considered. To this end, we propose several inequalities used

to construct the relaxation of BME(n).

11

1

2

3

4

5

1

2 3

4

5

1

2

3

4

Figure 2.1: Two Caterpillar Faces for BME(5). These constraints force a lower bound

on xij, which corresponds to an upper bound on the topological distance lij. These

particular faces were studied in [7].

Proposition 1 (Caterpillar and Cherry Faces). For every i, j ∈ S, with i 6= j,

1 ≤ xij ≤ 2n−3. (2.1)

This inequality provides both a lower bound and an upper bound on each of the

decision variables used in the model. These inequalities suffice to guarantee that our

polytope is bounded, since it is contained within the hypercube [1, 2n−3](
n
2). The right-

hand side of the inequality follows immediately using the definition of xij and noting

that every leaf must be separated using at least one internal node. These constraints

are called the Cherry Faces. Similarly, on the left-hand side, the Caterpillar Facets

follow because the distance between any two taxon in a tree is at most n− 2 internal

nodes away.

12

Proposition 2 (Kraft Equalities). Let i, j ∈ S. Then for every i ∈ S,

∑
j;j 6=i

xij = 2n−2. (2.2)

The Kraft Equality is a necessary condition for a path length sequence to represent a

phylogeny. These equalities are commonly encountered in information theory, specif-

ically in Huffman trees, which are rooted, binary trees used to represent symbols in

a coding alphabet. Interestingly, Huffman trees can be described using a path length

sequence [16]. Therefore, we can think of a phylogeny as a Huffman tree encoded in

a binary alphabet using the taxa as symbols in the code [5, 9]. We do not provide

a proof of this inequality here, but one can derive this property using an inductive

edge collapsing argument and an appropriate relabeling of the taxa.

Proposition 3 (Intersecting-Cherry Facets). Let i, j, k ∈ S be distinct. Then, for

any collection of phylogenetic trees with either {i, j} or {j, k} as cherries, we have

xij + xjk − xik ≤ 2n−3. (2.3)

This inequality will become strictly less than when a graph contains neither {i, j} or

{j, k} as cherries. The proof that this inequality forms a facet of BME(n) can be found

in [7] (See Theorem 4.7). In [5], an equivalent form of this inequality was proposed.

The authors referred to these constraints as the triangular inequalities. In Figure 2.2,

we provide the Schlegel diagram displaying a particular Intersecting-Cherry Facet for

BME(5).

13

d

f

b c

d

f

b

a

c

df

b a

c

d

f

b

a

c

d

f b

a

c

d

f

b

a

c

a

Figure 2.2: A visualization of an intersecting cherry facet for BME(5), presented

in [7]. The vertices in this facet include any tree which contains {a, b} or {b, c} as

cherries.

14

Proposition 4 (Split Facets). Consider π = {S1, S2}, a partition of S. Let |S1| :=

k ≥ 3 and |S2| := m ≥ 3. Then for i, j ∈ S1

∑
i,j
i<j

xij ≤ (k − 1)2n−3 (2.4)

Here, | · | denotes the cardinality. For convenience, we will refer to types of splits

using the cardinality of their partitions, e.g., we say a tree exhibits a (k,m)-split.

This inequality allows us to have some control on the positioning of the taxa within a

subgraph of a tree t. The split inequality is an equality for any tree that displays the

split, and is a strict inequality for all others. In [8], we proved that this inequality,

indeed, forms a facet of BME(n). We also showed that this inequality grows on the

order of O(2n), which will be relevant to our discussion on the performance of our

proposed algorithm in later sections.

We define our relaxation of the BME Polytope as the intersection of half-

spaces given by Propositions 1-4. This operation forms a new polytope, which we

call the Splitohedron, denoted as Sp(n). Some properties regarding faces of Sp(n) are

provided in Table 2.2. We now state a theorem obtained in [8] relating the vertices

of Sp(n) and BME(n).

15

Classification Size of Collection Vertices in Faces

Caterpillar Faces
(
n
2

)
(n− 2)!

Cherry Faces
(
n
2

)
(2n− 7)!!

Intersecting Cherry Facets
(
n
2

)
(n− 2) 2(2n− 7)!!

Kraft Equalities n -

Split-Facets 2n−1 −
(
n
2

)
− n− 1 (2m− 3)!!(2k − 3)!!

Table 2.2: We provide some statistics for the inequalities used in our relaxation,

Sp(n), based on [8]. Notice that the facets of first three classes of inequalities grow

polynomially in n, while the facets for (k,m)-splits grow exponentially in n. The

Kraft Equalities appear in all faces of the polytope, so they trivially contain all of

the vertices.

Theorem 1. Let t be a phylogenetic tree with n taxa. If the number of cherries of

t is at least dn
4
e, then x(t) is a vertex in both BME(n) and Sp(n). For n ≤ 11 the

statement holds regardless of the number of cherries.

Theorem 1 allows us to estimate when we begin losing information under the relax-

ation. As long as n ≤ 11, the Splitohedron will contain all the vertices of BME(n).

Otherwise, we begin losing some of the vertices of the BME Polytope.

16

CHAPTER III

MODELING WITH LINEAR PROGRAMMING

3.1 Conventions for Linear Programming Models

Many problems in applications involve optimizing a particular quantity, which is sub-

ject to a set of constraints. This is called constrained optimization. These constraints

can either take the form of inequalities, equalities, or combinations of the two. We

say that a mathematical programming problem is a linear programming problem if it

can be expressed in the form

argmax
x

cT · x

subject to Ax ≤ b

x ≥ 0,

where cT , x, and b are vectors. Here, A is an m × n matrix that consists of real

numbers. Each entry of the vector x is called a decision variable. We call the space

contained by matrix-vector inequality the feasible region for the problem because

solutions must be contained in this space. This convention used for formulating our

model generalizes other types of problems we might encounter. For example, if we

wish to minimize an objective, rather than maximize, we simply multiply the objective

function by a negative constant. Furthermore, the inclusion of equality constraints is

17

redundant in the standard form because every equality constraint can be represented

as a conjunction of two inequalities, one of which is multiplied by a negative to flip

the direction of the inequality. Finally, if the right-hand side of the non-negativity

constraint is not satisfied, we can simply make a substitution in the problem that

shifts the lower bound of the new decision variable.

Some additional descriptive terms for a linear programming problem are often

related to the range of values that decision variables can take, which often influences

the approach used to solve the problem. In this current setup, each decision variable

takes the value of a real number. For many problems, involving integer quantities,

a decision variable with a continuous value does not make sense, e.g., sizes of bolts

available in a hardware store. If the problem involves values from a discrete list

of available values, we call that problem a Discrete Programming Problem (DP).

Problems involving integer restrictions result in either a Mixed-Integer Programming

Problem (MIP) or an Integer Programming Problem (IP). The latter case arises if all

of the decision variables are restricted to be integers, while the former case involves

only a few of the decision variables being required to take integer values.

In practice, formulating a problem as a continuous linear programming prob-

lem is advantageous in that these types of problems are well-studied, and we often

have efficient methods to solve them. These formulations are particularly important

because they are used in a variety of applications in prominent research areas such

as game theory, transportation theory, and resource allocation. In stark contrast to

the continuous setting, problems formulated as MIPs, IPs, and DP’s are much more

18

difficult to solve, despite their deceivingly simple appearance. Today, a substantial

amount of modern research is devoted to the design of more efficient algorithms to

handle these types of problems.

3.2 The Discrete Integer Linear Programming Model

The linearity of the half-spaces defining the Splitohedron and the underlying linear

objective function suggest a linear programming based approach. Recall that, in

Chapter 1, we defined the path-length functional that describes the length of a tree

t ∈ T . As previously noted, we seek a minimizer x(t?) of this functional, but we

delayed defining the region containing admissible solutions. Now that we have defined

our relaxation of the BME Polytope, we can use it as the feasible region for our linear

programming model. Our model is as follows.

Formulation (Discrete ILP).

argmin
x

d · x

subject to
∑
j;j 6=i

xij = 2n−2, ∀i ∈ S (3.1)

xij + xjk − xik ≤ 2n−3, i, j, k ∈ S, i 6= j 6= k (3.2)∑
i,j∈S1
i<j

xij ≤ (k − 1)2n−3, k ≥ 3,m ≥ 3 (3.3)

1 ≤ xij ≤ 2n−3, ∀i, j ∈ S, i 6= j (3.4)

xij ∈ {2k : k ∈ Z+ ∪ {0}}, i, j ∈ S, i 6= j (3.5)

19

Here we use argmin because we want to return the argument x that minimizes the

scaled path length L(x). This form of our functional considers x as a general vector

without the dependence on t. This is a direct consequence of our relaxation, which

introduces non-tree realizable vectors into the feasible region. Notice that (3.1)-(3.4)

are the Kraft Equalities, Intersecting Cherry Facets, Split Facets, and the Caterpillar

and Cherry Faces, respectively. These are the same inequalities we used to define our

polytope Sp(n). The last constraint, (3.5), states that each of the decision variables

belongs to the set of powers of two. This allows us to avoid encountering many of

the potential solutions that might not belong to the BME Polytope that are present

in our relaxation.

3.3 Excluding the Four-Point Condition

An interesting question related to the options for model constraints is whether or not

particular inequalities are necessary to produce a phylogenetic tree. Many existing

models such as those presented in [5, 9], include what is commonly called the Four-

Point Condition.

Proposition 5 (Four-Point Condition). Let i, j, k, l ∈ S be distinct. Then any binary

phylogenetic tree in T satisfies

xijxkl ≥ min{xikxjl, xilxjk}. (3.6)

This particular form can be derived by transforming the version of the Four-Point

Condition presented in [3], using our definition of xij. In this form, the inequalities

20

are fully nonlinear, as opposed to the non-transformed inequalities, which can be lin-

earized. As noted in [5], the Four-Point Condition and Kraft Equalities are necessary

to completely characterize the path length sequences in T .

We chose to exclude the Four-Point Condition so that we preserve the linear-

ity in our formulation. At present, it is known that these conditions are necessary,

but not sufficient for binary phylogenetic trees. Our experimental observations of

test cases lead us to conjecture that our algorithm, in conjunction with (3.1)-(3.5),

is sufficient to provide a tree realization for x. In practice, the inclusion of the Four-

Point Condition is troublesome because the total number of inequalities generated by

this constraint, alone, is exponential. This results in a notable increase in the time

required to solve the problem. One can circumvent this problem, of course, by dy-

namically adding the exponential constraints as needed, rather than including them

all at once.

21

CHAPTER IV

THE BRANCH AND BOUND ALGORITHM

4.1 Structure of the Algorithm

Solving NP-hard optimization problems to optimality is an incredibly difficult pro-

cess. One of the most common techniques for solving this class of problems is called

Branch and Bound. This process is recursive, breaking the original problem into sub-

problems, which are easier to solve. We sometimes describe the recursive nature of

this process as traversing a binary search tree, where each node represents an indi-

vidual problem. We provide an example of a search tree in Figure 4.1. To begin, the

discrete valued constraints on the decision variables are relaxed. This allows us to

utilize Linear Programming algorithms because the decision variables, now, admit a

continuum of values. The initial Linear Programming problem that results from this

relaxation is called the root LP. Computing its solution allows us to determine the

feasibility of the original problem. If the solution to the root LP meets our original

restrictions for the decision variables, then the branch and bound routine terminates.

Otherwise, a branching rule is used to determine how to divide the solution space,

resulting in two subproblems (or nodes). After solving each of these problems, a

selection strategy is used to determine which nodes to explore in the search tree. If

22

1

2a 2b

3a

4a 4b

3b

Figure 4.1: An example of a Branch and Bound binary search tree. Active nodes

follow along the indicated blue path, while fathomed nodes are labeled in black.

a node is not explored, we say the node was fathomed or pruned. Once a node is

selected for exploration, the process is repeated. The inequalities used in the creation

of individual problems, along the path, are maintained throughout the search. Once

we obtain a feasible solution satisfying the constraints on the decision variables, we

can update the global bound on the objective and use it to prune subproblems, which

provide a less optimal objective value. We are permitted to prune subproblems in this

manner, even if the discrete constraints on the decision variables are not satisfied. We

call the best, current solution the incumbent solution. This pruning process allows

us to eliminate significant portions of the search space, which effectively reduces the

algorithm’s running time. Repeatedly applying this process allows us to eventually

obtain the optimal solution to our original Discrete Programming problem.

23

Designing a Branch and Bound algorithm involves a great deal of experimen-

tation. One has a large amount of flexibility among choices for bounding functions,

selection strategies, and the branching rules available for implementation. An addi-

tional degree of freedom with Branch and Bound algorithms, often used to improve

performance, are heuristics. Heuristics, on a general level, involve incorporating

problem-dependent experimental information into an algorithm to eliminate unlikely

candidates in the branch and bound process and promote faster convergence. Such

techniques allow for fast computation of often intractable, NP-hard optimization

problems. However, approaches that utilize heuristics cannot guarantee that the

solution obtained is the global minimizer (or maximizer) for the problem.

We propose two branching methods to handle the Discrete Integer Linear

Program developed in Chapter 3. We provide pseudo-codes for the main algorithm

in Figure 4.2 and the branching routines for pure Branch and Bound and a heuristic

Branch and Bound techniques in Figures 4.3 and 4.4, respectively. Both routines

are part of the main script, which is used to evaluate the feasibility of the relaxed

problem. The main difference between the two methods is that one method utilizes

a heuristic, while the other relies exclusively on the Branch and Bound process.

24

Algorithm 1: The Discrete ILP Main Algorithm

Require: Identification of minimizer x(t?)
Input: d, A, b, Aeq, beq, lb, ub, n, maxiter0, maxiter1, ε, heuristic
Output: x?, L?, status
1: Initialization: set bound = +∞ and iter = 0
2: Solve the relaxation at the root node → x0, L0, status0
3: if status = infeasible then
4: Return x?,L? = ∅
5: else
6: if heuristic = 0 then
7: Call branch0 → x?,L?, status
8: else if heuristic = 1 then
9: Find all entries s.t. |x0(i)− 2n−3| < ε for i = 1, . . . ,

(
n
2

)
10: Fix positions and update Aeq,beq, ub
11: Call branch1 → x?,L?, status
12: end if
13: end if

Figure 4.2: Main algorithm for the Discrete ILP problem. The algorithm decides to
call a particular branching function depending on whether or not we use a heuristic.

25

Algorithm 2: Branch0 Algorithm

Input: d, A, b, Aeq, beq, lb, ub, xt,Lt, ε, bound
Output: x̃, L̃, status, bb
1: Solve the relaxation at the current node → x0,L0, status0
2: if status0 = infeasible or L0 > bound then
3: Return input, bb ← bound
4: else
5: Compute E = max

i
{min{|x0(i)− 2blog2(x0(i))c|, |x0(i)− 2dlog2(x0(i))e|}}

6: if E < ε or iter > maxiter1 then
7: if L0 < bound then
8: x̃← x0, L̃ ← L0, bb ← L0

9: else
10: Return input, bb ← bound
11: end if
12: Return
13: end if
14: Select a branching variable x0(j)
15: Build subproblem P1 : Set x0(j) ≤ 2blog2(x0(j))c in {A,b} → {A1,b1}
16: Build subproblem P2 : Set x0(j) ≥ 2dlog2(x0(j))e in {A,b} → {A2,b2}
17: iter ← iter + 2
18: Call branching routine for P1 → x1,L1, status1, bound1
19: if bound1 < bound and status1 = feasible then
20: x̃← x1, L̃ ← L1, bound ← bound1, bb ← bound1, status ← status1
21: else
22: Return P1 input data, bb ← bound
23: end if
24: Call branching routine for P2 → x2,L2, bound2, status2
25: if bound2 < bound and status2 = feasible then
26: x̃← x2, L̃ ← L2, bb ← bound2, status ← status2
27: end if
28: end if

Figure 4.3: Branching algorithm for pure Branch and Bound.

26

Algorithm 3: Branch1 Algorithm

Input: d, A, b, Aeq, beq, lb, ub, xt,Lt, ε, bound
Output: x̃, L̃, status, bb
1: Solve the relaxation at the current node → x0,L0, status0
2: if status0 = infeasible or L0 > bound then
3: Return input, bb ← bound
4: else
5: Compute E = max

i
{min{|x0(i)− 2blog2(x0(i))c|, |x0(i)− 2dlog2(x0(i))e|}}

6: if E < ε or iter > maxiter1 then
7: if L0 < bound then
8: x̃← x0, L̃ ← L0, bb ← L0

9: else
10: Return input, bb ← bound
11: end if
12: Return
13: end if
14: if iter > maxiter0 then
15: Find an entry k = argmin

i
|x0(i)− 2[log2(x0(i))]| < ε for i = 1, . . . ,

(
n
2

)
16: Set x0(k) = 2[log2(x0(k))] and update Aeq,beq
17: end if
18: Select a branching variable x0(j)
19: Build subproblem P1 : Set x0(j) ≤ 2blog2(x0(j))c in {A,b} → {A1,b1}
20: Build subproblem P2 : Set x0(j) ≥ 2dlog2(x0(j))e in {A,b} → {A2,b2}
21: iter ← iter + 2
22: Call branching routine for P1 → x1,L1, status1, bound1
23: if bound1 < bound and status1 = feasible then
24: x̃← x1, L̃ ← L1, bound ← bound1, bb ← bound1, status ← status1
25: else
26: Return P1 input data, bb ← bound
27: end if
28: Call branching routine for P2 → x2,L2, bound2, status2
29: if bound2 < bound and status2 = feasible then
30: x̃← x2, L̃ ← L2, bb ← bound2, status ← status2
31: end if
32: end if

Figure 4.4: Branching algorithm using a LNS heuristic. Once we specify a tolerance,
the algorithm determines if a decision variable can be fixed before branching.

27

4.2 Branch Selection Strategy

During the branching process, we would like to know how to select the branching

variable used to build the subproblems. Various selection strategies currently exist,

which allow us to make these decisions. In our approach, we select the branching

variable by examining each decision variable’s distance to its adjoining powers of

two. We first select the minimum distance between each decision variable and its

adjoining powers of two. Then, find the entry that maximizes this result. For a

vector x0, this is the entry i satisfying

argmax
i
{min{|x0(i)− 2blog2x0(i)c|, |x0(i)− 2dlog2x0(i)e|}}. (4.1)

Rather than utilizing our lexicographic ordering convention described earlier, it is

preferable to think of x0 as a vector of length
(
n
2

)
with entries (x0(1), x0(2), . . . , x0(N)).

This mapping between the orderings allows for a simpler numerical implementation.

Given the structure for the sequence of powers of two, our branching strategy is more

likely to select variables whose distance is close to that of a cherry. The distances

separating powers of two greatly increase as we consider more terms. Therefore, we

think of this as a bottom-up selection strategy. Our particular choice for a branch-

ing strategy was guided by examining output from subproblems within the search

tree. Specifically, we observed that the linear programming algorithm used in the

relaxations tended to prioritize finding cherries during the branch and bound process

before clustering nearby items.

28

Alternatively, we could have devised a more complex selection strategy that

incorporates the effects from previous choices for branching variables into subsequent

selections. These types of strategies are commonly used in Branch and Bound al-

gorithms, but we opted for a simpler approach for an ease of implementation. It is

well known that selection strategies greatly influence the performance of Branch and

Bound algorithms. Existing strategies can be improved using sophisticated techniques

such as machine-learning and statistics to guide the exploration (See for example [1]).

One could adopt this framework for our problem, but an in-depth discussion of ad-

vanced strategies is beyond the scope of this work.

4.3 Large Neighborhood Search and the Tolerance Parameter

In some cases, pure Branch and Bound strategies might not be practical in terms of

CPU time. The problem with pure Branch and Bound strategies is that they can pro-

duce solutions that are invalid, yet feasible, due to the introduction of floating point

error. On the other hand, careless rounding schemes can often lead to instabilities in

the Branch and Bound process. The algorithm may converge to the optimal solution

slowly, so additional user options, such as heuristics become necessary to improve

numerical convergence. Once we begin making assumptions about the solutions, we

eliminate a large portion of available answers. While one can no longer guarantee

that the solution obtained from the Branch and Bound process is optimal, using care-

fully designed heuristics can allow one to obtain qualitatively good solutions. Here,

29

“good” refers to a solution that is valid (discrete constraints are satisfied), feasible,

and either optimal or quasi-optimal.

After developing a pure Branch and Bound algorithm to handle our model, we

performed numerical experiments to determine possible improvements for tuning our

algorithm. An examination of the root LP and intermediate solutions for subproblems

suggest that cherries are determined first and once an entry becomes relatively close

to a power of two, its changes in subsequent problems are minimal. Guided by this

observation, we decided to utilize a rounding scheme, which adjusts and fixes an entry

of the solution to a subproblem while maintaining feasibility. We refer to this fixing

process as a Large Neighborhood Search (LNS). This operation is performed only if

the entry is within an allowable distance ε to its nearest power of two neighbor. We

call ε the tolerance parameter, which characterizes how radical or conservative we

wish to be with the fixing process. This approach differs from existing Branch and

Bound algorithms for the BME Problem in that users have an option to control the

frequency of rounding used in the search tree. As ε → 0, we rely less on rounding

and the solution intuitively becomes closer to the solution from a pure Branch and

Bound approach.

The heuristic option for the Discrete ILP algorithm uses the fixing procedure

in two places: the root LP and inside the Branch and Bound routine. During the

feasibility check for the root LP, the heuristic option determines the number of cherries

present by examining its solution. If it finds that there are at least two cherries in x0,

the algorithm fixes their entries to the values given by their respective upper bounds,

30

inside Aeq and beq. Then, assuming all the cherries have been found, we can reset the

upper bounds for the remaining decision variables. We send these arguments to the

Branch and Bound function to begin the search. The algorithm performs pure Branch

and Bound until we reach maxiter0, then it switches to a combined feature of LNS

with Branch and Bound to solve the remaining subproblems. Before the algorithm

branches, it determines if entries in the solution at the current node are eligible for

rounding. We select a candidate for fixing if an entry of x0 satisfies

argmin
i
|x0(i)− 2[log2(x0(i))]| < ε, (4.2)

where ε > 0 is a prescribed rounding tolerance and [·] is the nearest integer function.

If the algorithm finds an entry k, satisfying (4.2), it rounds x0(k) to its nearest

discrete-allowed value by setting

x0(k) = 2[log2(x0(k))] (4.3)

in the equality constraints {Aeq,beq} to be maintained indefinitely in the search.

Currently, our approach does not use previous information from the branching

process to decide how to pick variables to fix. In future developments, we would like

to experiment with more intelligent heuristics. In particular, we would like to consider

utilizing approaches such as a Relaxation Induced Neighborhood Search (RINS) and

guided dives, which are better equipped to handle infeasibilities and unproductive

searches, specifically related to rounding, using sophisticated backtracking processes.

Authors in [6] develop these methods, exploring how each of the methods define,

search, and diversify neighborhoods to improve incumbent solutions.

31

CHAPTER V

NUMERICAL RESULTS AND CONCLUSIONS

5.1 Numerical Implementation

For simplicity, we chose to implement the algorithms developed in Chapter 4 using

MATLAB – the code for the algorithms can be found in the appendix. First, the func-

tion BMEineq generates the constraints for BME(n), which are passed as arguments,

along with the dissimilarity data, to the main algorithm – this is where we begin the

Branch and Bound process. To solve the relaxations at each node, in our search tree,

we use MATLAB’s linprog solver. In particular, we chose the dual-simplex algorithm

because it is designed to handle large-scale optimization problems involving many de-

cision variables and constraints. In the options structure for the solver, we specified

a constraint tolerance of 1× 10−10. We found that this choice allows us to maintain

a considerable amount of accuracy without significantly hindering performance.

In our algorithms, we defined two variables, maxiter0 and maxiter1, as stop-

ping criterion. Pure Branch and Bound uses only the former, while the heuristic

option utilizes both. In either case, maxiter0 was set to 1.5× 104. The value of max-

iter1 in the heuristic option was set to twice the value of maxiter0. The idea, here,

is that we let the program run using pure Branch and Bound initially, then switch

32

to the heuristic, to try again, if the initial run was unproductive. Our algorithms

terminate if we exceed the maximum number of allowable iterations or the solution

at the current node has entries within a distance ε from the nearest, power of two.

In our simulations, we chose ε to be 1× 10−4. For our purposes, we used a single tol-

erance constraint in our branching algorithms, although, in principle, we could have

defined different tolerances, say ε0, ε1, and ε2, to use for stopping criterion, branching

variable selection, and the LNS search, respectively. Once the algorithm terminates,

one can draw the phylogenetic tree by passing the solution to the distance function,

which infers the topological distances lij of the phylogenetic tree.

5.2 Error Metrics

To test the effectiveness of our algorithm, we can analyze the “distance” between a

tree returned by the algorithm t? and the true solution T . One might be tempted to

use standard norms, such as

‖x‖ =
N∑
i=1

|xi|, (5.1)

and

‖x‖2 =

(
N∑
i=1

x2i

)1/2

. (5.2)

Standard norms, such as (5.1) and (5.2), display no preference in the ordering among

the entries of a vector. Therefore, it is possible to obtain a completely different tree

by carefully interchanging the entries in x. In other words, the order is important

because it inherently contains topological information related to the phylogenetic tree

33

we are studying. Therefore, we will need a more sophisticated metric that considers

this ordering.

In [15], Robinson and Foulds proposed a new distance, which, in the same

paper, they proved was a metric. This distance is commonly called the Robinson-

Foulds metric, which we denote as d(t1, t2). Given two trees, t1 and t2, the metric

describes the total number of “moves” required to transform t1 into t2 or vice-versa.

More specifically, these moves are referred to as edge contractions and expansions.

A contraction is an operation on a tree that collapses an edge between two internal

nodes, while an expansion inserts an edge between two internal nodes. It should be

noted that these moves are restricted to adjoining internal nodes and they are inverse

operations of each other. The Robinson-Foulds distance has the properties of a metric

space, namely:

(i) d(t1, t2) > 0, if t1 6= t2,

(ii) d(t1, t2) = 0 if and only if t1 = t2,

(iii) d(t1, t2) = d(t2, t1), and

(iv) d(t1, t3) = d(t1, t2) + d(t2, t3), for t1, t2, t3 ∈ T .

Proofs of these properties are presented in [15]. We pay particular attention to prop-

erties (i) and (ii) in our error analysis. In using this metric, we make an underlying

assumption that we are comparing two trees. For our algorithm, we have not yet

proved that our process returns a binary tree, so this step must be verified by inspec-

34

tion. We expect d(·, ·) to take non-negative, integer values, given the interpretation

of the edge moves used in the transformation process.

Interestingly, this metric is related to the partitions on the list of taxa, which

we denoted as π = {S1, S2}. We referred to these partitions of S as splits. Recall

that any tree displaying a split S1 satisfies

∑
i,j
i<j

xij = (k − 1)2n−3, (5.3)

where k is the cardinality of S1. Using this fact, we define the characteristic function

for splits as

Xπ(t1, t2) :=


1, if either t1 or t2 displays π, while the other does not,

0, otherwise.

The above definition considers a partition of S and takes a logical role in differen-

tiating splits among the two trees. Using (5.3), we can determine whether or not a

split is displayed in a tree. Combining this information we can now define d(t1, t2) in

terms of characteristic functions, leading to

d(t1, t2) :=
∑

π={S1,S2}

Xπ(t1, t2). (5.4)

The sum is implicitly taken over all partitions of S with the additional requirement

that each split have a cardinality of at least two. This ensures that problems do not

arise in the calculation of the characteristic function from (5.3).

35

5.3 Results

We examined the performance of our algorithms using both perfect and noisy initial

data. The test data was obtained from a collection of trees, with 7 ≤ n ≤ 10,

having various topologies and edge weights. We also considered heavily unbalanced

trees, which contain edge weight(s) that are considerably larger than others, in an

attempt to fool the algorithm. Additionally, we observed that the algorithms perform

well on trees that contain large numbers of cherries. It has been conjectured that

these topologies promote the greatest computational difficulties for solving the BME

problem. To this end, we chose to study cases where the underlying topology is either

a caterpillar tree or a tree that contains few cherries. Specific information for the test

cases used in the simulation is presented in the appendices.

Results from both simulations were compared to the true solutions using the

Robinson-Foulds metric defined above. In the instances of noisy data, we assumed

the data in d was perfect, then perturbed it by a vector δ, whose entries are normally

distributed, i.e., δij ∼ N (0, σ2). We chose σ = 1 in our experiments, i.e., the variables

obey a standard normal distribution. This perturbation creates a modified objective

function

(d + δ) · x.

Ideally, our algorithm should be adept at handling noise in the input data. More

specifically, the algorithm should be able to return the same solution using corrupted

or noisy data, provided the noise is contained within the safety radius. For distance

36

based methods, the safety radius for BME(n) is denoted as ρnT̂ , where T̂ is the

smallest edge length in T . For experients involving the safety radius, each tree in

the test suite is known. Thus, we denote it by T . Following [18], we say that we are

within the safety radius if

‖δ‖∞ < ρnT̂

holds. For our experiments, T̂ = 1, so the above condition simplifies. While the

safety radius for our approach has not been identified, we include this information

so that we could quantify the amount of noise added in the experiments and observe

how this noise affects the solutions obtained by the algorithm.

The results for our numerical experiments, presented in Tables 5.1 and 5.2,

demonstrate the performance our algorithms. For smaller, more manageable values

of n, we see that pure Branch and Bound is preferable to the heuristic option in terms

of CPU time. However, as we consider larger cases, the problems become increasingly

difficult and pure Branch and Bound begins to fail. Cases where the algorithm failed

to produce a tree-realizable solution were indicated by “—.” For many of the trials,

the L∞-norm for the noise was relatively large. Based on the measured error, it

appears that the noise had little to no qualitative affect on the solutions obtained

by the algorithm. This could indicate a possible insensitivity among a subset of

decision variables. Alternatively, given the way we devised the experimental noise,

it is possible that more sensitive variables had negligible perturbations. In order to

examine this more closely, a complete statistical analysis of the algorithm needs to

be considered.

37

n Test Case CPU Time (s) d(t?, T)

7
N7T1 0.20 0

N7T2 0.11 0

8
N8T1 1.328 0

N8T2 0.88 0

9
N9T1 — —

N9T2 1.59 0

10
N10T1 — —

N10T2 32.94 0

n Test Case CPU Time (s) d(t?, T)

7
N7T1 1.39 0

N7T2 1.50 0

8
N8T1 2.11 0

N8T2 1.81 0

9
N9T1 3.77 0

N9T2 2.95 0

10
N10T1 192.73 0

N10T2 41.55 0

Table 5.1: Results for both the pure Branch and Bound algorithm (top) and Branch

and Bound using the LNS heuristic (bottom), using perfect data.

38

n Test Case CPU Time (s) ‖δ‖∞ d(t?δ , T)

7
N7T1 0.20 2.04 0

N7T2 0.31 1.22 0

8
N8T1 122.36 2.02 0

N8T2 59.73 2.51 0

9
N9T1 12.08 1.68 0

N9T2 345.80 0.36 0

10
N10T1 — 0.87 —

N10T2 — 0.97 —

n Test Case CPU Time (s) ‖δ‖∞ d(t?δ , T)

7
N7T1 1.61 2.04 0

N7T2 1.28 1.22 0

8
N8T1 129.25 2.02 0

N8T2 1.95 2.51 0

9
N9T1 36.94 1.68 0

N9T2 5.48 0.36 0

10
N10T1 348.51 0.87 0

N10T2 75.41 0.97 0

Table 5.2: Results for both the pure Branch and Bound algorithm (top) and Branch

and Bound using the LNS heuristic (bottom), using noisy data.

39

One of the primary considerations of our algorithms is CPU time. However,

the interpretation might be misleading. One might be tempted to begin comparing

our results to those presented in [5] and [9], but, first, one needs to consider other

factors such as computing platforms, implementation in various coding languages and

professional software, and the test cases used in the experiments. For instance, algo-

rithms designed in a high-performance computing environment, or in the framework

of commercial optimization software, such as CPLEX, are better equipped to handle

the computational workload required to solve large scale problems. Therefore, the

performance results serve only as a benchmark for relative comparison.

5.4 Future Considerations

In the future, we would like to obtain qualitative information regarding the solutions

returned by our algorithm. For instance, can we guarantee that our algorithm, in

conjunction with current constraints, returns a minimizer x? that can be realized by

a phylogenetic tree t? Additionally, we plan to add a verification feature to our code

that determines if the solution returned by the algorithm has a tree representation.

We would also like to understand how the use of the LNS heuristic, and heuristics,

in general, influence convergence. This aspect could be further explored using more

statistically guided selection strategies and branching rules mentioned in Chapter

4. By further studying the geometric structure of BME(n), we could include more

polynomial-sized classes of facets to obtain refinements of our relaxation. This could

40

possibly allow us to extend results on the accuracy of Sp(n) while maintaining a

manageable-sized formulation.

An advantage of our approach is the independent structure of the computa-

tions in the Branch and Bound search tree. Such problems are excellent candidates

for parallel processing. Exploring parallel computing options allows us to improve the

diversity of our search space, for example, by simultaneously branching on multiple

variables, in an effort to obtain good bounds earlier in the search. This would be

highly beneficial to the pruning process because we could potentially eliminate larger

portions of the feasible region, which effectively reduces the CPU time; however, great

care must be taken to design parallel algorithms, so that the jobs on processors are

evenly distributed. Otherwise, it is likely that a subset of the processors will become

idle during the computations, which significantly slows performance. In some cases,

the performance can be so poor that sequential processing is favorable to parallel

processing. For this reason, we do not consider this development here. More detail

on parallelization of Branch and Bound can be found in [2, 6].

In Chapter 3, as we developed the Discrete Integer Linear Programming

model, we noted that our formulation size is O(2n) because we chose to include all

of our Split Facets. In terms of computational performance, this inclusion is not

ideal because the resulting constraint matrix for inequalities becomes rather large.

The time required to solve the large system of linear equations greatly increases. To

circumvent this in future developments, we would like to formulate a polynomial-sized

version of our current model, using a process that dynamically adds the split facets,

41

as needed. This separation device will manage our split inequalities, forming local

refinements of Sp(n). Local refinements are reasonable if the initial solution is placed

in a neighborhood of the minimizer. Therefore it may be necessary to investigate

more sophisticated linear programming solvers.

While MATLAB is considerably easy to use, in terms of implementing our

algorithms, we believe performance would benefit greatly if compiled languages, such

as C++ or Fortran, were used to perform the dense calculations. In this sense, a

cross-platform setup would be ideal, where the constraints can be easily generated in

MATLAB, or Julia, and passed to the Branch and Bound code, written in a high-

performance environment.

42

BIBLIOGRAPHY

[1] T. Achterberg, T. Koch, and A. Martin. Branching rules revisited. Operations
Research Letters, (33):42–54, 2005.

[2] D. Bader, W. Hart, and C. Phillips. Parallel algorithm design for branch and
bound. In H. Greenberg, editor, Tutorials on Emerging Methodologies and Appli-
cations in Operations Research, chapter 5, pages 1–44. Kluwer Academic Press,
2004.

[3] P. Buneman. A note on the metric properties of trees. Journal of Combinatorial
Theory, (17):48–50, 1974.

[4] D. Catanzaro. The minimal evolution problem: Overview and classification.
Networks, 53(2):112–125, 2007.

[5] D. Catanzaro, M. Labbé, R. Pesenti, and J.-J. Salazar-González. The balanced
minimal evolution problem. INFORMS Journal on Computing, 24(2):276–294,
2012.

[6] E. Danna, E. Rothberg, and C. Le Pape. Exploring relaxation induced neigh-
borhoods to improve mip solutions. Mathematical Programming, 102(1):71–90,
2005.

[7] S. Forcey, L. Keefe, and W. Sands. Facets of the balanced minimal evolution
polytope. Journal of Mathematical Biology, 73(2):447–468, 2016.

[8] S. Forcey, L. Keefe, and W. Sands. Split facets of balanced minimal evolution
polytopes and the permutoassociahedron. arXiv:1608.01622, (pre-print), 2016.

[9] B. Fortz, O. Oliveira, and C. Requejo. Compact mixed integer linear program-
ming models to the minimum weighted tree reconstruction problem. European
Journal of Operations Research, 256:242–251, 2017.

[10] O. Gascuel and M. Steel. Neighbor-joining revealed. Molecular Biology and
Evolution, 23:1997–2000, 2006.

43

[11] J. M. Gómez, M. Verdú, and F. Perfectti. Ecological interactions are evolution-
arily conserved across the entire tree of life. Nature, 465:918–921, 2010.

[12] D. Haws, T. Hodge, and R. Yoshida. Optimality of the neighbor joining algorithm
and faces of the balanced minimum evolution polytope. Bulletin of Mathematical
Biology, 73(11):2627–2648, 2011.

[13] J. Moreira, E. Miguez, C. Vilachá, and A. Otero. A parallel branch and bound
approach to optimal power flow with discrete variables. Przeglad Elektrotech-
niczny, 89(3):47–52, 2013.

[14] Y. Pauplin. Direct calculation of a tree length using a distance matrix. Journal
of Molecular Evolution, 51(1):41–47, 2000.

[15] D. Robinson and L. Foulds. Comparison of phylogenetic trees. Mathematical
Biosciences, 53:131–147, 1981.

[16] W. Rytter. Trees with minimum weighted path length. In D. Mehta and S. Sahni,
editors, Handbook of Data Structures and Applications, chapter 10, pages 1–22.
Chapman and Hall/CRC, 2004.

[17] N. Saitou and M. Nei. The neighbor joining method: a new method for re-
constructing phylogenetic trees. Molecular Biology and Evolution, 4:406–425,
1987.

[18] J. Xi, J. Xie, R. Yoshida, and S. Forcey. Stochastic safety radius on neighbor-
joining method and balanced minimal evolution on small trees. arXiv:1507.08734,
(pre-print), 2015.

44

APPENDIX

Listing A.1: MATLAB BNB Test Data

1 c l e a r a l l
2 c l o s e a l l
3
4 n = 9 ; %Number o f taxa
5 [A, b , Aeq , beq , lb , ub] = BMEineq(n) ; %Generate BME(n)
6 k = nchoosek (n , 2) ; %Number o f d e c i s i o n v a r i a b l e s
7 M=1:k ; %Number o f v a r i a b l e s r equ i r ed to be d i s c r e t e
8 e=1e−4; %Tolerance parameter
9 maxi te rat ion = 15000 ; %Maximum number o f i t e r a t i o n s

10 no i s e = 1 ; %Determines i f we want to add no i s e
11
12 %% Cases
13 %Provide a t rue s o l u t i o n and d i s t anc e data f o r exper iments
14
15 %n = 6 :
16 %Test : N6T1
17
18 % xtrue = [2 4 4 4 2 1 1 4 8 8 2 1 2 1 4] ;
19 %
20 % d = [4 3 3 3 4 5 5 3 2 2 4 5 4 5 3] ;
21
22 %Test : N6T2
23
24 % xtrue = [8 1 4 2 1 1 4 2 1 2 4 8 4 2 4] ;
25 %
26 % d = [2 14 3 13 14 14 3 13 14 13 3 2 12 13 3] ;
27
28
29 %n = 7 :
30 %Test : N7T1
31
32 % xtrue = [1 1 2 16 4 8 16 8 1 4 2 8 1 4 2 2 8 4 4 8 8] ;
33 %

45

34 % d = [17 18 5 3 5 3 3 14 18 16 16 15 19 17 17 6 4 4 6 4
4] ;

35
36 %Test : N7T2
37
38 % xtrue = [4 8 8 4 4 4 2 2 4 4 16 16 2 2 2 2 2 2 16 4 4] ;
39 %
40 % d = [11 7 7 13 14 11 10 10 12 13 8 2 12 13 10 12 13 10

3 12 1 3] ;
41
42
43 %n = 8 :
44 %Test : N8T1
45
46 % xtrue = [8 8 16 8 4 16 4 32 4 2 1 16 1 4 2 1 16 1 16 8

8 8 16 4 . . .
47 % 16 2 32 2] ;
48 %
49 % d = [4 4 3 4 5 3 5 2 5 6 7 3 5 5 6 7 3 7 3 4 4 4 3 5 3

6 2 6] ;
50
51 %Test : N8T2
52
53 % xtrue = [32 16 4 4 4 4 4 16 4 4 4 2 2 8 8 8 4 4 32 8 4

4 8 4 4 . . .
54 % 16 16 3 2] ;
55 %
56 % d = [5 9 15 16 15 18 19 8 14 15 14 17 18 10 11 10 13 14

9 12 15 16 . . .
57 % 13 16 17 9 10 9] ;
58
59
60 %n = 9 :
61 %Test : N9T1
62
63 xtrue = [16 8 32 64 4 2 1 1 32 32 16 16 8 4 4 16 8 32 16

8 8 32 8 4 2 2 ...
64 4 2 1 1 32 16 16 32 32 6 4] ;
65
66 d = [4 5 3 2 6 7 8 8 3 3 4 4 5 6 6 4 5 3 4 5 5 3 5 6 7 7

6 7 8 8 3 4 4 ...
67 3 3 2] ;
68

46

69 %Test : N9T2
70
71 % xtrue = [32 8 8 8 4 2 64 2 16 16 16 8 4 32 4 16 64 8 4

8 4 16 32 16 . . .
72 % 8 16 8 4 8 4 32 4 32 2 64 2] ;
73 %
74 % d = [4 8 9 9 11 16 4 13 6 7 7 9 14 4 11 5 3 7 12 8 9 6

4 9 9 6 . . .
75 % 8 13 9 10 9 11 6 16 5 1 3] ;
76
77
78 %n = 10 :
79 %Test : N10T1
80
81 % xtrue = [128 64 32 16 8 4 2 1 1 64 32 16 8 4 2 1 1 64

32 16 8 4 2 2 . . .
82 % 64 32 16 8 4 4 64 32 16 8 8 64 32 16 16 64 32 32 64 64

1 2 8] ;
83 %
84 % d = [2 3 4 5 6 7 8 9 9 3 4 5 6 7 8 9 9 3 4 5 6 7 8 8 3

4 5 6 7 7 . . .
85 % 3 4 5 6 6 3 4 5 5 3 4 4 3 3 2] ;
86
87 %Test : N10T2
88
89 % xtrue = [64 128 8 32 8 8 2 4 2 64 16 64 16 16 4 8 4 8

32 8 8 2 4 2 . . .
90 % 32 128 32 8 16 8 32 32 8 16 8 32 8 16 8 32 64 32 64 128

6 4] ;
91 %
92 % d = [3 3 11 9 11 12 16 15 17 4 10 8 10 11 15 14 16 . . .
93 % 12 10 12 13 17 16 18 6 2 5 9 8 10 6 7 11 10 12 5 9 8 10

8 7 9 3 3 4] ;
94
95
96 %% Solve the BME Problem and c a l c u l a t e t o p o l o g i c a l d i s t a n c e s
97 i f no i s e == 0 %No no i s e added , so we have p e r f e c t data
98
99 %Set a s i d e a pool o f 2 co r e s

100 %parpool (2)
101
102 spmd
103 %Algorithm 2 (h e u r i s t i c = 1)

47

104 t2s = cputime ;
105 [x2 , val2 , s t a tu s2]=DILP1(d ,A, b , Aeq , beq , lb , ub ,M, e ,

maxiterat ion , 1) ;
106 t 2 f = cputime − t2 s ;
107 RF2 = RFmetric (x2 , xtrue , n) ;
108
109 %Algorithm 1 (h e u r i s t i c = 0)
110 t1s = cputime ;
111 [x1 , val1 , s t a tu s1]=DILP1(d ,A, b , Aeq , beq , lb , ub ,M, e ,

maxiterat ion , 0) ;
112 t 1 f = cputime − t1 s ;
113 RF1 = RFmetric (x1 , xtrue , n) ;
114
115 %l = d i s t ance (x , n) ; %i f we want to draw the graph
116 end
117
118 %% Solve the same problem , but add some no i s e . Do t h i s i f

no i s e = 1
119 e l s e %no i s e == 1
120
121 %Create the d i s t r i b u t i o n
122 mu = 0 ; %Mean
123 sigma = 1 ; %Standard Deviat ion
124 h = 0 . 4 ; %S c a l e s the pe r tu rba t i on s
125
126 de l t a = h*normrnd (mu, sigma , 1 , k) ; %Construct the

pe r turbat i on vec to r
127
128 L i n f = max(abs (de l t a)) ; %How much no i s e we add
129
130 dpert = d + de l t a ; %Perturb the o b j e c t i v e func t i on
131
132 %Set a s i d e a pool o f 2 co r e s
133 %parpool (2)
134
135 spmd
136 %Algorithm 2 (h e u r i s t i c = 1)
137 t2s = cputime ;
138 [x2pert , va l2pert , p e r t 2 s t a t u s]=DILP1(dpert ,A, b , Aeq , beq , lb

, ub ,M, e , maxiterat ion , 1) ;
139 t 2 f = cputime − t2 s ;
140 RF2 = RFmetric (x2pert , xtrue , n) ;
141

48

142
143 %Algorithm 1 (h e u r i s t i c = 0)
144 t1s = cputime ;
145 [x1pert , va l1pert , p e r t 1 s t a t u s]=DILP1(dpert ,A, b , Aeq , beq , lb

, ub ,M, e , maxiterat ion , 0) ;
146 t 1 f = cputime − t1 s ;
147 RF1 = RFmetric (x1pert , xtrue , n) ;
148 end
149 %l p e r t = d i s t anc e (xpert , n) ; %i f we want to draw the

graph
150 end

49

Listing A.2: MATLAB Code for Generating BME(n)

1 func t i on [A, b , Aeq , beq , lb , ub] = BMEineq(n)
2 %This func t i on determines the Matrix o f vec to r i n e q u a l i t i e s
3 %used f o r the BME Problem . Here , LHS = A, RHS = b ,
4 %lb i s the lower bound on the x va lues f o r the problem , whi l e
5 %ub i s the upper bound on the x va lue s .
6
7 %I n i t i a l i z e matrix to s t o r e c o n s t r a i n t s
8 k = nchoosek (n , 2) ;
9 r = k+k*(n−2)+2*n ; %+number o f s p l i t s

10 A = ze ro s (r , k) ;
11 b = ze ro s (r , 1) ;
12 Aeq = ze ro s (n , k) ; %What' s the s i z e o f Aeq?
13 beq = ze ro s (n , 1) ; %S i z e o f beq?
14
15 %Create a vec to r f o r the lb on index :
16 lb = ones (k , 1) ;
17
18 %Create a vec to r f o r the ub on index :
19 ub = ze ro s (k , 1) ;
20 f o r j j =1:k
21 ub(j j) = 2ˆ(n−3) ;
22 end
23
24 %I n t e r s e c t i n g Cherry Facets : x i k + x jk − x i j <= 2ˆ(n−2)
25 %Star t a counter to index the row
26 t = 1 ;
27 f o r i = 1 : n−1
28 f o r j = 1+i : n
29 f o r s = 1 : n
30 i f i ˜=s && s˜=j
31 A(t , min (i , j) *(2*n−1−min(i , j))/2−n+max(i , j)) =

−1;
32 A(t , min (i , s) *(2*n−1−min(i , s))/2−n+max(i , s)) =

1 ;
33 A(t , min (s , j) *(2*n−1−min(s , j))/2−n+max(s , j)) =

1 ;
34 b(t , 1) = 2ˆ(n−3) ;
35 t = t + 1 ; %Increment t
36 end
37 end
38 end
39 end

50

40
41 %S p l i t Facets : sum(x i j) , where i , j are in S1 and i < j .
42 i f n>5 %Condit ion f o r a s p l i t
43 f l = f l o o r (n/2) ;
44 row = 0 ;
45 f o r i i = 3 : f l
46 row = row + nchoosek (n , i i) ;
47 end
48 c o l = f l ;
49 C = ze ro s (row , c o l) ; %P r e a l l o c a t e s matrix
50 x=1:n ; %” Leaves ”
51 f o r nn = 3 : f l %S i z e s o f subse t s
52 %C = combnk(x , nn) ; %Generates a matrix o f subse t s f o r

s p l i t s
53 C1 = combnk(x , nn) ; %Generates a matrix o f subse t s f o r

s p l i t s
54 [rowC1 , colC1] = s i z e (C1) ;
55 %Begin the t r a n s f e r to C
56 i f nn == 3
57 C(1 : rowC1 , 1 : 3) = C1 (1 : rowC1 , 1 : 3) ;
58 e l s e %nn>3 and we need to tack onto the end o f the

matrix
59 C(a l l (˜C, 2) , :) = [] ;
60 [rC , cC] = s i z e (C) ; %Returns the cur rent s i z e o f

C
61 C(rC+1:rC + rowC1 , 1 : nn) = C1 (1 : rowC1 , 1 : nn) ;
62 end
63 end
64
65 %Generate the rows o f A from the matrix o f subse t s
66 d = 1 ; %row counter
67 f o r r r = 1 : row
68 nonz = nonzeros (C(rr , :)) ; %counts { | non−zero e n t r i e s

| }
69 m = length (nonz) ;
70 i f mod(n , 2) ˜=0 %n i s odd , we want a l l s i z e
71 %f l o o r (n/2) subse t s
72 %Enter as a s p l i t :
73 f o r i = 1 : n−1
74 f o r j=i +1:n
75 R1o = ismember (i ,C(rr , :)) ; %checks

f o r i in C

51

76 R2o = ismember (j ,C(rr , :)) ; %checks
f o r j in C

77 i f R1o == 1 && R2o == 1
78 A(k+k*(n−2)+2*n+d , i *(2*n−1− i)/2−n

+j) = 1 ;
79 b(k+k*(n−2)+2*n+d , 1) = (m−1)*2ˆ(n

−3) ;
80 end
81 end
82 end
83 d = d + 1 ; %Increment d f o r next row entry
84 e l s e %n i s even so subse t s w i l l be s l i g h t l y

d i f f e r e n t
85 i f m < n/2
86 f o r i = 1 : n−1
87 f o r j=i +1:n
88 R1e = ismember (i ,C(rr , :)) ;
89 R2e = ismember (j ,C(rr , :)) ;
90 i f R1e == 1 && R2e == 1
91 A(k+k*(n−2)+2*n+d , i *(2*n−1− i)

/2−n+j) = 1 ;
92 b(k+k*(n−2)+2*n+d , 1) = (m−1)

*2ˆ(n−3) ;
93 end
94 end
95 end
96 d = d + 1 ; %Increment d f o r next entry
97 e l s e %m = n/2
98 f o r i = 1 : n−1
99 f o r j=i +1:n

100 R1ef = ismember (1 ,C(rr , :)) ;
101 R2ef = ismember (i ,C(rr , :)) ;
102 R3ef = ismember (j ,C(rr , :)) ;
103 i f R1ef == 1 && R2ef == 1 && R3ef

== 1
104 A(k+k*(n−2)+2*n+d , i *(2*n−1− i)

/2−n+j) = 1 ;
105 b(k+k*(n−2)+2*n+d , 1) = (m−1)

*2ˆ(n−3) ;
106 end
107 end
108 end
109 d = d + 1 ; %Increment d f o r next entry

52

110 end
111 end
112 end
113 end
114
115 %Kraft E q u a l i t i e s
116 %sum(x i j) = 2ˆ(n−2)
117 %Since these are e q u a l i t i e s , put them in to Aeq and beq
118 f o r i = 1 : n
119 f o r j = 1 : n
120 i f i ˜=j
121 Aeq(i , min (i , j) *(2*n−1−min(i , j))/2−n+max(i , j)) = 1 ;
122 end
123 end
124 beq (i , 1) = 2ˆ(n−2) ;
125 end
126 %Clean up and f i l t e r out zero rows in A and b
127 A(a l l (˜A, 2) , :) = [] ;
128 b(a l l (˜b , 2) , :) = [] ;
129 Aeq(a l l (˜Aeq , 2) , :) = [] ;
130 beq (a l l (˜ beq , 2) , :) = [] ;
131 end

53

Listing A.3: MATLAB Code for Discrete ILP

1 func t i on [x , val , s t a t u s] = DILP1(f ,A, b , Aeq , beq , lb , ub ,M, e ,
maxiterat ion , h e u r i s t i c)

2 %This func t i on s o l v e s a d i s c r e t e−i n t e g e r l i n e a r programming
problem

3 %us ing the branch and bound algor i thm .
4 %The code uses MATLAB' s l i n e a r programming s o l v e r ” l i n p r o g ”
5 %to s o l v e the LP r e l a x a t i o n s at each node o f the branch and

bound t r e e .
6 % min f *x
7 % sub j e c t to
8 % A*x <= b
9 % Aeq * x = beq

10 % lb <= x <= ub
11 % M i s a vec to r o f i n d i c e s f o r the d i s c r e t e v a r i a b l e s
12 % e i s the t o l e r a n c e
13 %The output v a r i a b l e s are :
14 % x : the s o l u t i o n
15 % val : va lue o f the o b j e c t i v e func t i on at the optimal

s o l u t i o n
16 % s t a t u s =1 i f s u c c e s s f u l
17 % =0 i f maximum number o f i t e r a t i o n s reached in the

l i n p r o g func t i on
18 % =−1 i f the re i s no s o l u t i o n
19 %In order to run t h i s code , you w i l l need the c o n t r a i n t s from

BMEineq .m
20 %and BNBtest .m.
21 %Author : William Sands
22 %This code was adapted from code provided by Kartik

Sivaramakrishnan to s o l v e a p a r t i c u l a r d i s c r e t e−i n t e g e r
l i n e a r programming problem .

23
24 %%
25 g l o b a l count
26 g l o b a l maxiter0
27 g l o b a l maxiter1
28 h = h e u r i s t i c ; %This determines the rounding scheme f o r the

branching
29 count =2;
30
31 i f h == 0
32 maxiter0 = maxi te rat ion ; %We don' t round any o f the

v a r i a b l e s

54

33 e l s e i f h == 1
34 maxiter0 = maxi te rat ion ; %We round only one v a r i a b l e at a

time
35 maxiter1= 2*maxi te rat ion ;
36 e l s e
37 f p r i n t f (' e r r o r : h e u r i s t i c must equal 0 or 1 . ')
38 re turn
39 end
40
41 opt ions = opt imset ('d i sp l ay ' , ' o f f ') ;
42 opt ions . Algorithm = 'dual−s implex ' ;
43 opt ions . Const ra intTo le rance = '1e−10' ;
44
45 bound = i n f ; %The i n i t i a l bound i s s e t to +ve i n f i n i t y
46 %Solve the LP r e l a x a t i o n at the root node us ing MATLAB' s

l i n p r o g func t i on
47 %Type ” help l i n p r o g ” f o r he lp with the l i n p r o g rou t in e
48
49 %Solve the i n i t i a l LP s o l u t i o n to determine f e a s i b l i l i t y
50 [x0 , val0 , e x i t f l a g] = l i n p r o g (f ,A, b , Aeq , beq , lb , ub , [] , opt i ons) ;
51
52 %I f the LP i s i n f e a s i b l e , then don' t branch
53 i f e x i t f l a g <= 0
54 x = [] ;
55 va l = [] ;
56 s t a t u s = e x i t f l a g ;
57 re turn
58 end
59
60 i f h == 1 %Determine number o f c h e r r i e s
61 c h e r r i e s = f i n d (abs (x0 (M)−ub(M)) <= e) ;
62 newub = f i n d (abs (x0 (M)−ub(M)) > e) ;
63 [row , ˜] = s i z e (c h e r r i e s) ;
64 i f row >=2
65 %I n i t i a l i z e Aeq and Beq .
66 [rq , cq] = s i z e (Aeq) ;
67 Aeq = [Aeq ; z e r o s (row , cq)] ; %Same column s i z e as A
68 beq = [beq ; z e r o s (row , 1)] ;
69 %Set the c h e r r i e s as e q u a l i t i e s in Aeq and beq
70 f o r r r = 1 : row
71 Aeq(rq+rr , c h e r r i e s (r r)) = 1 ;
72 beq (rq+rr , 1) = ub(c h e r r i e s (r r)) ;
73 end

55

74 %Reset the upper bounds s i n c e we found ' a l l ' o f
the c h e r r i e s

75 ub(newub) = ub(c h e r r i e s (1))−0.5*ub(c h e r r i e s (1)) ;
%Set new ub

76 [x , val , s tatus , b] = branch1 (f ,A, b , Aeq , beq , lb , ub , x0
, val0 ,M, e , bound) ;

77
78 e l s e %Don' t f i x the c h e r r i e s . Cherry cannot be f o r c ed .
79 [x , val , s tatus , b] = branch1 (f ,A, b , Aeq , beq , lb , ub , x0 ,

val0 ,M, e , bound) ;
80 end
81
82 e l s e %Don' t use the rounding h e u r i s t i c
83 [x , val , s tatus , b] = branch0 (f ,A, b , Aeq , beq , lb , ub , x0 , val0 ,M,

e , bound) ;
84 end
85 end

56

Listing A.4: MATLAB Code for branch0

1 func t i on [xx , val , s tatus , bb] = branch0 (f ,A, b , Aeq , beq , lb , ub , x , v
,M, e , bound)

2 g l o b a l count
3 g l o b a l maxiter0
4
5 opt ions . Display = ' o f f ' ;
6 opt ions . Algorithm = 'dual−s implex ' ;
7 opt ions . Const ra intTo le rance = '1e−8' ;
8
9 %Solve the LP r e l a x a t i o n at the cur rent node

10 [x0 , val0 , s t a tu s0] = l i n p r o g (f ,A, b , Aeq , beq , lb , ub , [] , opt ions) ;
11
12 %I f the LP r e l a x a t i o n i s i n f e a s i b l e , then PRUNE THE NODE BY

INFEASIBILITY
13 %I f the new o b j e c t i v e value i s worse , then prune by

opt ima l i ty
14 i f s t a tu s0 <= 0 | | va l0 > bound
15 %Return the input to l i n p r o g
16 xx = x ;
17 va l = v ;
18 s t a t u s = s ta tu s0 ;
19 bb = bound ;
20 re turn ;
21 end
22
23 %%
24 %I f the s o l u t i o n to the LP r e l a x a t i o n i s f e a s i b l e in the DILP

problem , then check the o b j e c t i v e va lue o f t h i s
25 %aga in s t the o b j e c t i v e value o f the best f e a s i b l e / v a l i d

s o l u t i o n that has been obtained so f a r f o r the DILP
problem .

26 %I f the new f e a s i b l e / v a l i d s o l u t i o n has a lower o b j e c t i v e
va lue then update the bound

27 %Else PRUNE THE NODE BY OPTIMALITY
28
29 %Calcu la te t o l e r a n c e and f i n d branching v a r i a b l e s .
30 [E, ind] = max(min (abs (x0 (M)−2.ˆ f l o o r (log2 (x0 (M)))) , abs (x0 (M)

−2.ˆ c e i l (l og2 (x0 (M)))))) ;
31
32 i f E < e | | count > maxiter0 %I f we have a v a l i d s o l u t i o n or

exceed maxiter
33 s t a t u s = 1 ;

57

34 i f va l0 < bound %The new f e a s i b l e s o l u t i o n i s an
improvement

35 xx = x0 ;
36 va l = val0 ;
37 bb = val0 ;
38 e l s e
39 xx = x ; %Return the input s o l u t i o n and most r e c ent

bounds
40 va l = v ;
41 bb = bound ;
42 end
43 re turn
44 end
45
46 %%
47 %I f we come here t h i s means that the s o l u t i o n o f the LP

r e l a x a t i o n i s not v a l i d in the DILP problem .
48 %However , the o b j e c t i v e value o f the LP r e l a x a t i o n i s lower

than the cur rent bound .
49 %So we branch on t h i s node to c r e a t e two subproblems .
50 %We w i l l s o l v e the two subproblems r e c u r s i v e l y by c a l l i n g the

same branching func t i on .
51
52 %S e l e c t the branching v a r i a b l e .
53 br var = M(ind (1)) ;
54 br va lue = x0 (br var) ;
55 [˜ , c] = s i z e (A) ;
56
57 %F i r s t LP problem with the added c o n s t r a i n t that x i <= f l o o r

(x i) , i=ind (1)
58 A1 = [A ; z e r o s (1 , c)] ;
59 A1(end , br var) = 1 ;
60 b1 = [b ;2ˆ f l o o r (log2 (b r va lue))] ;
61
62 %Second LP problem with the added c o n s t r a i n t that x i >= c e i l

(x i) , i=ind (1)
63 A2 = [A ; z e r o s (1 , c)] ;
64 A2(end , br var) = −1;
65 b2 = [b ; −2ˆ c e i l (l og2 (br va lue))] ;
66
67 %%
68 %Solve the f i r s t LP problem
69 count = count + 1 ; %+One f o r each subproblem being c rea ted

58

70 [x1 , val1 , s tatus1 , bound1] = branch0 (f , A1 , b1 , Aeq , beq , lb , ub , x0 ,
val0 ,M, e , bound) ;

71 s t a t u s = s ta tu s1 ;
72 i f s t a tu s1 > 0 && bound1 < bound %I f the s o l u t i o n was

s u c c e s s f u l l and g i v e s a b e t t e r bound
73 xx = x1 ;
74 va l = val1 ;
75 bound = bound1 ;
76 bb = bound1 ;
77 e l s e
78 xx = x0 ;
79 va l = val0 ;
80 bb = bound ;
81 end
82
83 %Solve the second LP problem
84 count = count + 1 ; %+One f o r each subproblem being c rea ted
85 [x2 , val2 , s tatus2 , bound2] = branch0 (f , A2 , b2 , Aeq , beq , lb , ub , x0 ,

val0 ,M, e , bound) ;
86 i f s t a tu s2 > 0 && bound2 < bound %I f the s o l u t i o n was

s u c c e s s f u l and g i v e s a b e t t e r bound
87 s t a t u s = s ta tu s2 ;
88 xx = x2 ;
89 va l = val2 ;
90 bb = bound2 ;
91 end
92 end

59

Listing A.5: MATLAB Code for branch1

1 func t i on [xx , val , s tatus , bb] = branch1 (f ,A, b , Aeq , beq , lb , ub , x , v
,M, e , bound)

2 g l o b a l count
3 g l o b a l maxiter0
4 g l o b a l maxiter1
5
6 opt ions . Display = ' o f f ' ;
7 opt ions . Algorithm = 'dual−s implex ' ;
8 opt ions . Const ra intTo le rance = '1e−8' ;
9

10 %Solve the LP r e l a x a t i o n at the cur rent node
11 [x0 , val0 , s t a tu s0] = l i n p r o g (f ,A, b , Aeq , beq , lb , ub , [] , opt ions) ;
12
13 %I f the LP r e l a x a t i o n i s i n f e a s i b l e , then PRUNE THE NODE BY

INFEASIBILITY
14 %I f the new o b j e c t i v e value i s worse , then prune by

opt ima l i ty
15 i f s t a tu s0 <= 0 | | va l0 > bound
16 %Return the input to l i n p r o g
17 xx = x ;
18 va l = v ;
19 s t a t u s = s ta tu s0 ;
20 bb = bound ;
21 re turn ;
22 end
23
24 %%
25 %I f the s o l u t i o n to the LP r e l a x a t i o n i s f e a s i b l e in the DILP

problem , then check the o b j e c t i v e va lue o f t h i s
26 %aga in s t the o b j e c t i v e value o f the best f e a s i b l e / v a l i d

s o l u t i o n that has been obtained so f a r f o r the DILP
problem .

27 %I f the new f e a s i b l e / v a l i d s o l u t i o n has a lower o b j e c t i v e
va lue then update the bound

28 %Else PRUNE THE NODE BY OPTIMALITY
29
30 %Calcu la te t o l e r a n c e and f i n d branching v a r i a b l e s .
31 [E, ind]= max(min (abs (x0 (M)−2.ˆ f l o o r (log2 (x0 (M)))) , abs (x0 (M)

−2.ˆ c e i l (l og2 (x0 (M)))))) ;
32
33 i f E < e | | count > maxiter1 %I f we have a v a l i d s o l u t i o n or

exceed maxiter

60

34 s t a t u s = 1 ;
35 i f va l0 < bound %The new f e a s i b l e s o l u t i o n i s an

improvement
36 xx = x0 ;
37 va l = val0 ;
38 bb = val0 ;
39 e l s e
40 xx = x ; %Return the input s o l u t i o n and most r e c ent

bounds
41 va l = v ;
42 bb = bound ;
43 end
44 re turn
45 end
46
47 %%
48 %I f we come here t h i s means that the s o l u t i o n o f the LP

r e l a x a t i o n i s not v a l i d in the DILP problem .
49 %However , the o b j e c t i v e value o f the LP r e l a x a t i o n i s lower

than the cur rent bound .
50 %So we branch on t h i s node to c r e a t e two subproblems .
51 %We w i l l s o l v e the two subproblems r e c u r s i v e l y by c a l l i n g the

same branching func t i on .
52
53 %S e l e c t the branching v a r i a b l e .
54 br var = M(ind (1)) ;
55 br va lue = x0 (br var) ;
56 [req , ceq] = s i z e (Aeq) ;
57 [˜ , c] = s i z e (A) ;
58
59 %Use the rounding h e u r i s t i c (op t i ona l) to check f o r e n t r i e s

a r b i t r a r i l y c l o s e to t h e i r
60 %d i s c r e t e va lue s . Don' t s e t e q u a l i t i e s f o r v a r i a b l e s that are

a l r eady powers o f 2 .
61
62 %We are us ing a h e u r i s t i c
63 nonz = f i n d (abs (x (M)−2.ˆ round (log2 (x0 (M)))) > 0) ; %nonpower

o f 2 e n t r i e s
64
65 i f count > maxiter0
66 cRind = f i n d (min (abs (x0 (nonz)−2.ˆ round (log2 (x0 (nonz))))) <

e) ; %Smal l e s t with in t o l
67 end

61

68
69 i f count > maxiter0
70 i f ˜ isempty (cRind) %I f a v a r i a b l e can be rounded
71 Aeq = [Aeq ; z e r o s (1 , ceq)] ;
72 beq = [beq ; z e r o s (1)] ;
73 Aeq(req +1,cRind (1)) = 1 ;
74 beq (req +1) = 2ˆ round (log2 (x0 (cRind (1)))) ; %Round that

v a r i a b l e
75 end
76 end
77
78 %F i r s t LP problem with the added c o n s t r a i n t that x i <= f l o o r

(x i) , i = ind (1)
79 A1 = [A ; z e r o s (1 , c)] ;
80 A1(end , br var) = 1 ;
81 b1 = [b ;2ˆ f l o o r (log2 (b r va lue))] ;
82
83 %Second LP problem with the added c o n s t r a i n t that x i >= c e i l

(x i) , i=ind (1)
84 A2 = [A ; z e r o s (1 , c)] ;
85 A2(end , br var) = −1;
86 b2 = [b ; −2ˆ c e i l (l og2 (br va lue))] ;
87
88 %%
89 %Solve the f i r s t LP problem
90 count = count +1; %+One f o r each subproblem being c rea ted
91 [x1 , val1 , s tatus1 , bound1] = branch1 (f , A1 , b1 , Aeq , beq , lb , ub , x0 ,

val0 ,M, e , bound) ;
92 s t a t u s = s ta tu s1 ;
93 i f s t a tu s1 > 0 && bound1 < bound %I f the s o l u t i o n was

s u c c e s s f u l l and g i v e s a b e t t e r bound
94 xx = x1 ;
95 va l = val1 ;
96 bound = bound1 ;
97 bb = bound1 ;
98 e l s e
99 xx = x0 ;

100 va l = val0 ;
101 bb = bound ;
102 end
103
104 %Solve the second LP problem
105 count = count + 1 ; %+One f o r each subproblem being c rea ted

62

106 [x2 , val2 , s tatus2 , bound2] = branch1 (f , A2 , b2 , Aeq , beq , lb , ub , x0 ,
val0 ,M, e , bound) ;

107 i f s t a tu s2 > 0 && bound2 < bound %I f the s o l u t i o n was
s u c c e s s f u l and g i v e s a b e t t e r bound

108 s t a t u s = s ta tu s2 ;
109 xx = x2 ;
110 va l = val2 ;
111 bb = bound2 ;
112 end
113 end

63

Listing A.6: MATLAB Code to compute the Robinson-Foulds Metric

1 func t i on [t o t a l] = RFmetric (x1 , x2 , n)
2 %This func t i on computes the Robinson−Foulds d i s t anc e us ing

c h a r a c t e r i s t i c
3 %f u n c t i o n s to determine d i f f e r e n c e s in the s p l i t s . I t takes

vec to r valued
4 %input as we l l as the number o f taxa in the t r e e s . Here , x1

and x2
5 %r ep r e s en t two t r e e s .
6
7 %%
8
9 i f n < 4

10 f p r i n t f = ('Error . The number o f taxa must be at l e a s t 4 . '
) ;

11 re turn
12 end
13
14 %I n i t i a l i z e the sum f o r the RF metr ic
15
16 t o t a l = 0 ;
17
18 %% Generate the s e t o f p a r t i t i o n s
19
20 f l = f l o o r (n/2) ;
21 row = 0 ;
22 f o r i i = 2 : f l %Want s e t s o f s i z e 2 to f l o o r (n/2)
23 row = row + nchoosek (n , i i) ; %Ca l cu l a t e s how many rows

are needed
24 end
25 c o l = f l ; %Columns needed
26 C = ze ro s (row , c o l) ; %P r e a l l o c a t e s matrix f o r p a r t i t i o n s
27 x = 1 : n ; %” Leaves ”
28 f o r nn = 2 : f l %S i z e s o f subse t s
29
30 C1 = combnk(x , nn) ; %Generates a matrix o f subse t s f o r

s p l i t s
31 [rowC1 , ˜] = s i z e (C1) ; %Find dimensions o f C1
32
33 %Begin the t r a n s f e r to C
34 i f nn == 2
35 C(1 : rowC1 , 1 : 2) = C1 (1 : rowC1 , 1 : 2) ;

64

36 e l s e %nn > 3 and we need to tack onto the end o f the
matrix

37 C(a l l (˜C, 2) , :) = [] ;
38 [rC , cC] = s i z e (C) ; %Returns the cur rent s i z e o f

C
39 C(rC+1:rC + rowC1 , 1 : nn) = C1 (1 : rowC1 , 1 : nn) ;
40 end
41 end
42
43 %% Check to see i f s p l i t s are the same
44
45 %Sum over the s p l i t s
46
47 f o r r r = 1 : row
48 nonz = nonzeros (C(rr , :)) ; %Counts { | non−zero e n t r i e s | }
49 m = length (nonz) ;
50 i f mod(n , 2) ˜=0 %n i s odd , we want a l l s i z e f l o o r (n/2)

subse t s
51 %Enter as a s p l i t :
52 %I n i t i a l i z e a l o c a l sum to change f o r each row o f C
53 sum1 = 0 ;
54 sum2 = 0 ;
55
56 f o r i = 1 : n−1
57 f o r j=i +1:n
58
59 R1o = ismember (i ,C(rr , :)) ; %Checks f o r i

in C
60 R2o = ismember (j ,C(rr , :)) ; %Checks f o r j

in C
61
62 i f R1o == 1 && R2o == 1 %I t i s in the

s p l i t
63
64 %Update the sums
65 sum1 = sum1 + x1 (i *(2*n−1− i)/2−n+j) ;
66 sum2 = sum2 + x2 (i *(2*n−1− i)/2−n+j) ;
67
68 end
69 end
70 end
71

65

72 %Now compute the c h a r a c t e r i s t i c func t i on f o r t h i s
s p l i t

73
74 i f (sum1 == (m−1)*2ˆ(n−3) && sum2 ˜= (m−1)*2ˆ(n−3))

| | ...
75 (sum2 == (m−1)*2ˆ(n−3) && sum1 ˜= (m−1)*2ˆ(n−3))
76
77 t o t a l = t o t a l + 1 ; %C h a r a c t e r i s t i c i s 1 , so

update the sum
78
79 e l s e
80
81 t o t a l = t o t a l ;
82
83 end
84
85 e l s e %n i s even so subse t s w i l l be s l i g h t l y d i f f e r e n t
86 %Enter as a s p l i t :
87 %I n i t i a l i z e a l o c a l sum to change f o r each row o f C
88 sum1 = 0 ;
89 sum2 = 0 ;
90
91 i f m < n/2
92 f o r i = 1 : n−1
93 f o r j=i +1:n
94 R1e = ismember (i ,C(rr , :)) ;
95 R2e = ismember (j ,C(rr , :)) ;
96 i f R1e == 1 && R2e == 1
97
98 %Update the sums
99 sum1 = sum1 + x1 (i *(2*n−1− i)/2−n+

j) ;
100 sum2 = sum2 + x2 (i *(2*n−1− i)/2−n+

j) ;
101
102 end
103 end
104 end
105
106 e l s e %m = n/2
107 f o r i = 1 : n−1
108 f o r j=i +1:n
109 R1ef = ismember (1 ,C(rr , :)) ;

66

110 R2ef = ismember (i ,C(rr , :)) ;
111 R3ef = ismember (j ,C(rr , :)) ;
112 i f R1ef == 1 && R2ef == 1 && R3ef ==

1
113
114 %Update the sums
115 sum1 = sum1 + x1 (i *(2*n−1− i)/2−n+

j) ;
116 sum2 = sum2 + x2 (i *(2*n−1− i)/2−n+

j) ;
117
118 end
119 end
120 end
121
122 %Now compute the c h a r a c t e r i s t i c

func t i on f o r t h i s s p l i t
123
124 i f (sum1 == (m−1)*2ˆ(n−3) && sum2 ˜= (m−1)*2ˆ(

n−3)) | | ...
125 (sum2 == (m−1)*2ˆ(n−3) && sum1 ˜= (m−1)

*2ˆ(n−3))
126
127 t o t a l = t o t a l + 1 ; %C h a r a c t e r i s t i c i s

1 , so update the sum
128
129 e l s e
130
131 t o t a l = t o t a l ;
132
133 end
134
135 end
136 end
137 end
138
139 end

67

Listing A.7: MATLAB Code to obtain distances lij

1 func t i on [l] = d i s t anc e (x , n)
2 %This func t i on takes the s o l u t i o n returned by the DILP .m f i l e

and conver t s the e n t r i e s in the vec to r from paupl in
coo rd ina t e s to r e a l d i s t a n c e s

3 %us ing the formula : l i j = n−2−l og2 (x i j) f o r a l l e n t r i e s
4
5 num entr ies = length (x) ;
6 l = ze ro s (num entr ies , 1) ;
7 f o r i = 1 : num entr ies
8 l (i) = n−2−l og2 (x (i)) ;
9 end

10 end

68

